解:(1)由原式变形得
an+1=2tn+1an−3an+2tn+1−2tn−1
an+2tn−1
=2tn+1an+2tn+1−2an−2−an−2tn+1
an+2tn−1
=2tn+1an+2tn+1−2an−2
an+2tn−1
−1
=2tn+1(an+1)−2(an+1)
an+2tn−1
−1=
2(tn+1−1)(an+1)
an+2tn−1
−1,
即an+1=2(tn+1−1)(an+1)
an+2tn−1
−1,可得an+1+1=2(tn+1−1)(an+1)
an+2tn−1
所以
an+1+1
tn+1−1
=
2(an+1)
an+2tn−1 =
2(an+1)
an+1+2(tn−1)
=
2(an+1)
tn−1
an+1
tn−1
+2
.
记an+1
tn−1
=bn,则bn+1= 2bn
bn+2 ①,当n=1时,b1=a1+1
t−1 =2t−2
t−1 =2.
又由①取倒数得 1
bn+1 = 1
bn +1
2 , 1
b1 =1
2 ,即数列{ 1
bn }为首项公差均为1
2 的等差数列,
从而有 1
bn = 1
b1 +(n−1)•1
2 =n
2 ,即 an+1
tn−1
= 2
n ,
所以数列{an}的通项公式为:
an=2(tn−1)
n −1.
(2)由(1)可知
an+1−an=2(tn+1−1)
n+1 −2(tn−1)
n =
2(t−1)
n(n+1) [n(1+t+…+tn−1+tn)−(n+1)(
=
2(t−1)
n(n+1) [ntn−(1+t+…+tn−1)]= 2(t−1)
n(n+
=
2(t−1)2
n(n+1) [(tn−1+tn−2+…+1)+t(tn−2+
,
显然在t>0(t≠1)时恒有an+1-an>0,
故an+1>an.