如图,已知:△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F
(1):证明:EF与斜边B不相交时,则有EF=BE+CF(如图一)(2):如图二,EF与斜边BC相交时,其他条件不变,你能得到什么结论?请给证明2...
(1):证明:EF与斜边B不相交时,则有EF=BE+CF(如图一)
(2):如图二,EF与斜边BC相交时,其他条件不变,你能得到什么结论?请给证明
2 展开
(2):如图二,EF与斜边BC相交时,其他条件不变,你能得到什么结论?请给证明
2 展开
2个回答
展开全部
(1)证明:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,
∴∠CAF=∠EBA,
在△ABE和△CAF中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∴EF=EA+AF=BE+CF.
(2)结论:EF=BE-CF,
理由是:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴∠CAF=∠ABE,
在△ABE和△ACF中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∵EF=AF-AE,
∴EF=BE-CF.
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,
∴∠CAF=∠EBA,
在△ABE和△CAF中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∴EF=EA+AF=BE+CF.
(2)结论:EF=BE-CF,
理由是:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴∠CAF=∠ABE,
在△ABE和△ACF中,
∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,
∴△BEA≌△AFC.
∴EA=FC,BE=AF.
∵EF=AF-AE,
∴EF=BE-CF.
展开全部
图一
证明:因为BE垂直EF于E
所以角BEA=90度
因为角BEA+角BAE+角ABE=180度
所以角ABE+角BAE=90度
因为角BAE+角BAC+角CAF=180度
角BAC=90度
所以角BAE+角CAF=90度
所以角ABE=角CAF
因为CF垂直CF于F
所以角CFA=90度
所以角BEA=角CAF=90度
因为AB=AC
所以三角形ABE和三角形CAF全等(AAS)
所以BE=AF
AE=CF
因为EF=AE+AF
所以EF=BE+CF
图二:结论是BE=EF+CE
证明:因为BE垂直AF于E
所以角AFB=90度
因为角AFB+角ABF+角BAF=180度
所以角ABF+角BAF=90度
因为角BAC=角BAF+角CAF=90度
所以角ABF=角CAF
因为CE垂直AB于E
所以角AEC=90度
所以角AFB=角AEC=90度
因为AB=AC
所以三角形ABF和三角形CAE全等(AAS)
所以BE=AE
AF=CF
因为AE=AF+EF
所以BE=EF+CE
证明:因为BE垂直EF于E
所以角BEA=90度
因为角BEA+角BAE+角ABE=180度
所以角ABE+角BAE=90度
因为角BAE+角BAC+角CAF=180度
角BAC=90度
所以角BAE+角CAF=90度
所以角ABE=角CAF
因为CF垂直CF于F
所以角CFA=90度
所以角BEA=角CAF=90度
因为AB=AC
所以三角形ABE和三角形CAF全等(AAS)
所以BE=AF
AE=CF
因为EF=AE+AF
所以EF=BE+CF
图二:结论是BE=EF+CE
证明:因为BE垂直AF于E
所以角AFB=90度
因为角AFB+角ABF+角BAF=180度
所以角ABF+角BAF=90度
因为角BAC=角BAF+角CAF=90度
所以角ABF=角CAF
因为CE垂直AB于E
所以角AEC=90度
所以角AFB=角AEC=90度
因为AB=AC
所以三角形ABF和三角形CAE全等(AAS)
所以BE=AE
AF=CF
因为AE=AF+EF
所以BE=EF+CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询