在△ABC中,求证a²-b²/c²=sin(A-B)/sinC
2个回答
展开全部
根据正弦定理:
(a+b/c)(a-b/c)
=(sinA+sinB/sinC)(sinA-sinB/sinC)
分别处理,用和化为积公粗配段式:
sinA+sinB/sinC=2sin(A+B/2)cos(A-B/2)/sin(A+B)
=2sin(A+B/2)cos(A-B/2)/2sin(A+B/2)cos(A+B/2)
=cos(A-B/2)/cos(A+B/2)
同理:a-b/c=sin(A-B/2)/sin(A+B/2)
所以原式=sin(A-B/2)cos(A-B/卖陵2)/sin(A+B/2)cos(A+B/2)
=sin(A-B)/sin(A+B)=sin(A-B)/岩誉sinC
希望对您有所帮助
(a+b/c)(a-b/c)
=(sinA+sinB/sinC)(sinA-sinB/sinC)
分别处理,用和化为积公粗配段式:
sinA+sinB/sinC=2sin(A+B/2)cos(A-B/2)/sin(A+B)
=2sin(A+B/2)cos(A-B/2)/2sin(A+B/2)cos(A+B/2)
=cos(A-B/2)/cos(A+B/2)
同理:a-b/c=sin(A-B/2)/sin(A+B/2)
所以原式=sin(A-B/2)cos(A-B/卖陵2)/sin(A+B/2)cos(A+B/2)
=sin(A-B)/sin(A+B)=sin(A-B)/岩誉sinC
希望对您有所帮助
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询