求解高等数学的一道关于方向导数和梯度的题目
展开全部
f=x^2+2y^2+3z^2+xy+3x-2y-6z,
f'<x>=2x+y+3, f'<y>=4y+x-2, f'<z>=6z-6.
gradf(x,y,z)=if'<x>+jf'<y>+lf'<z.>=i(2x+y+3)+j(x+4y-2)+k(6z-6)
gradf(0,0,0)=3i-2j-6k={3,-2,-6}, gradf(1,1,1)=6i+3j+0k={6,3,0}.
f在点A(1,1,1)=的方向导数
∂f/∂l<A>=6cosα+3cosβ+0cosγ=6cosα+3cosβ
梯度的方向就是取得最大方向导数的方向,此时
cosα=6/√(6^2+3^2)=2/√5, cosβ=3/√(6^2+3^2)=1/√5, cosγ=0
方向导数的最大值是 6cosα+3cosβ=3√5,事实上,最大值就是梯度的模。
f'<x>=2x+y+3, f'<y>=4y+x-2, f'<z>=6z-6.
gradf(x,y,z)=if'<x>+jf'<y>+lf'<z.>=i(2x+y+3)+j(x+4y-2)+k(6z-6)
gradf(0,0,0)=3i-2j-6k={3,-2,-6}, gradf(1,1,1)=6i+3j+0k={6,3,0}.
f在点A(1,1,1)=的方向导数
∂f/∂l<A>=6cosα+3cosβ+0cosγ=6cosα+3cosβ
梯度的方向就是取得最大方向导数的方向,此时
cosα=6/√(6^2+3^2)=2/√5, cosβ=3/√(6^2+3^2)=1/√5, cosγ=0
方向导数的最大值是 6cosα+3cosβ=3√5,事实上,最大值就是梯度的模。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询