已知二次函数f(x)=ax平方+bx+c若对x1,x2∈R,且x1<x2,f(x1)≠f(x2),
方程f(x)=12[f(x1)+f(x2)]有两个不等实根,证明必有一个根属于(x1,x2)...
方程f(x)= 1 2 [f(x1)+f(x2)]有两个不等实根,证明必有一个根属于(x1,x2)
展开
1个回答
展开全部
当x2<-b/(2a)或x1>-b/(2a)时:
可知f(x)在(x1,x2)内是单调的。不妨设f(x1)<f(x2),则必有f(x1)<1/2[f(x1)+f(x2)]<f(x2),因此必然存在实数m∈(x1,x2)满足f(m)=1/2[f(x1)+f(x2)]。同理当f(x1)>f(x2)时也成立。
当x1<-b/(2a)且x2>-b/(2a)时:
若-b/(2a)-x1<x2+b/(2a),可设x1′=-b/a-x1,则有f(x1′)=f(x1),且f(x)在(x1′,x2)是单调的,以后证法同上。同理当-b/(2a)-x1>x2+b/(2a)时也成立
可知f(x)在(x1,x2)内是单调的。不妨设f(x1)<f(x2),则必有f(x1)<1/2[f(x1)+f(x2)]<f(x2),因此必然存在实数m∈(x1,x2)满足f(m)=1/2[f(x1)+f(x2)]。同理当f(x1)>f(x2)时也成立。
当x1<-b/(2a)且x2>-b/(2a)时:
若-b/(2a)-x1<x2+b/(2a),可设x1′=-b/a-x1,则有f(x1′)=f(x1),且f(x)在(x1′,x2)是单调的,以后证法同上。同理当-b/(2a)-x1>x2+b/(2a)时也成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询