设X1,X2,...Xn是来自正态总体N(μ,σ^2)的简单随机样本

设(X1,X2,...Xn)是来自正态总体N(μ,σ^2)的一个样本,记Y1=1/6(X1+X2+…+X6),Y2=1/3(X7+X8+X9),9S^2=1/2∑(Xi-... 设(X1,X2,...Xn)是来自正态总体N(μ,σ^2)的一个样本,记Y1=1/6(X1+X2+…+X6),Y2=1/3(X7+X8+X9),

9
S^2=1/2∑(Xi-X2)^2,Z=√2(Y1-Y2)/S
i=7
求统计量Z的分布
展开
 我来答
多哈就9
2013-12-18
知道答主
回答量:20
采纳率:0%
帮助的人:18.3万
展开全部
f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]
...
f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]

L=f(x1)*f(x2)...f(xn)=[1/(2piσ^2)^0.5]^n*exp[-(x1-μ)^2/2σ^2+...-(xn-μ)^2/2σ^2]
L=[1/(2piσ^2)^0.5n]*exp{-[(x1-μ)^2/+...+(xn-μ)^2]/2σ^2}

lnL=ln[1/(2piσ^2)^0.5n]-[(x1-μ)^2/+...+(xn-μ)^2]/2σ^2
lnL=-0.5n*ln(2piσ^2)-[(x1-μ)^2/+...+(xn-μ)^2]/2σ^2

lnL(对σ^2的导数)=-n/(2σ^2)+[(x1-μ)^2/+...+(xn-μ)^2]/2σ^4
lnL(对σ^2的导数)=0
所以-n/(2σ^2)+[(x1-μ)^2/+...+(xn-μ)^2]/2σ^4=0

σ^2=[(x1-μ)^2/+...+(xn-μ)^2]/n
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式