线性代数中什么是线性子空间?

此刻不在火星
2014-01-08 · 超过10用户采纳过TA的回答
知道答主
回答量:15
采纳率:0%
帮助的人:16.5万
展开全部
一个线性空间V,V`属于V,且V`满足线性空间的定义,则V`是V的线性子空间。

一个线性空间必须满足以下约束
给定域 F,一个向量空间是个集合 V 并规定两个运算:
向量加法:V + V → V 记作 v + w, ∃ v, w ∈ V,
标量乘法:F × V → V 记作 a v, ∃a ∈ F 及 v ∈ V。
符合下列公理 (∀ a, b ∈ F 及 u, v, w ∈ V):

相似度计算
向量加法结合律:u + (v + w) = (u + v) + w.
向量加法交换律: v + w = w + v.
向量加法的单位元: V 里有一个叫做零向量的 0,∀ v ∈ V , v + 0 = v.
向量加法的逆元素: ∀v∈V, ∃w∈V, 导致 v + w = 0.
标量乘法分配于向量加法上: a(v + w) = a v + a w.
标量乘法分配于域加法上: (a + b)v = a v + b v.
标量乘法一致于标量的域乘法: a(b v) = (ab)v。
标量乘法有单位元: 1 v = v, 这里 1 指示域 F 的乘法单位元.
有些教科书还强调以下两个闭包公理:
V 闭合在向量加法下:v + w ∈ V.
V 闭合在标量乘法下: a v ∈ V.
简而言之,向量空间是一个F-模。
V的成员叫作向量而F的成员叫作标量
若F是实数域R,V称为实数向量空间.
若F是复数域C,V称为复数向量空间.
若F是有限域,V称为有限域向量空间
对一般域F,V称为F-向量空间
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式