已知向量组,怎么求极大线性无关组。

教育小百科达人
2019-05-18 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

可以将向量组转化为矩阵,将向量看作矩阵的列向量,然后对矩阵进行初等行变换可以得到矩阵的阶梯形式,得到矩阵的秩,即为向量组的极大线性无关组的向量的个数。

观察矩阵可以看出互相线性无关的列向量,他们对应的向量组中的向量即为一个极大线性无关组。

例如:

扩展资料:

设S是一个n维向量组,α1,α2,...αr 是S的一个部分组,如果满足 α1,α2,...αr 线性无关;向量组S中每一个向量均可由此部分组线性表示,那么α1,α2,...αr 称为向量组S的一个极大线性无关组,或极大无关组

向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,箭头所指的方向表示向量的方向。

当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.同向且等长的有向线段都表示同一向量。

参考资料来源:百度百科——最大线性无关向量

v1rus0
推荐于2017-09-21 · TA获得超过388个赞
知道答主
回答量:62
采纳率:0%
帮助的人:87.4万
展开全部

可以将向量组转化为矩阵,将向量看作矩阵的列向量,然后对矩阵进行初等行变换可以得到矩阵的阶梯形式,得到矩阵的秩,即为向量组的极大线性无关组的向量的个数。观察矩阵可以看出互相线性无关的列向量,他们对应的向量组中的向量即为一个极大线性无关组

举个例子

追问
谢谢,十分感谢。
好评亲
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式