线性方程组有解的充要条件 证明

线性方程组有解的充要条件是它的系数矩阵与增广矩阵的秩相等,怎么证?(不要用向量证)... 线性方程组有解的充要条件是它的系数矩阵与增广矩阵的秩相等,怎么证?(不要用向量证) 展开
紫涛云帆
推荐于2016-12-01 · TA获得超过897个赞
知道小有建树答主
回答量:190
采纳率:0%
帮助的人:83万
展开全部
设n元线性方程组系数矩阵为A,增广矩阵为B

证明:
① 必要性:反证法:设r(A)<r(B),则B的行阶梯型矩阵中最后一个非零行对应矛盾方程0=1,
这与方程组有解相矛盾,因此原假设不成立,即r(A)=r(B)。
② 充分性:将B化为行阶梯型,设r(A)=r(B)=r(r≤n),则B的行阶梯型矩阵中含有r个非零行,
把这r个非零行的第一个非零元所对应的未知量作为非自由未知量,其余n-r个
作为自由未知量,并令n-r个自由未知量全取0,即可得方程组的一个解。
证毕!

顺便提一下,由以上不难得出,若方程组有解:
① 当r(A)=r(B)=n时,方程组没有自由未知量,因此只有唯一解。
② 当r(A)=r(B)=r<n时,方程组有n-r个自由未知量,令它们分别等于C1,C2,,,C(n-r),
可得含n-r个参数C1,C2,,,C(n-r)的解,这些参数可取任意值,所以此时方程组有无穷多解!
鎂月
2014-11-13
知道答主
回答量:12
采纳率:0%
帮助的人:3.6万
展开全部
设n元线性方程组系数矩阵为A,增广矩阵为B

证明:
① 必要性:反证法:设r(A)<r(B),则B的行阶梯型矩阵中最后一个非零行对应矛盾方程0=1,
这与方程组有解相矛盾,因此原假设不成立,即r(A)=r(B)。
② 充分性:将B化为行阶梯型,设r(A)=r(B)=r(r≤n),则B的行阶梯型矩阵中含有r个非零行,
把这r个非零行的第一个非零元所对应的未知量作为非自由未知量,其余n-r个
作为自由未知量,并令n-r个自由未知量全取0,即可得方程组的一个解。
证毕!

顺便提一下,由以上不难得出,若方程组有解:
① 当r(A)=r(B)=n时,方程组没有自由未知量,因此只有唯一解。
② 当r(A)=r(B)=r<n时,方程组有n-r个自由未知量,令它们分别等于C1,C2,,,C(n-r),
可得含n-r个参数C1,C2,,,C(n-r)的解,这些参数可取任意值,所以此时方程组有无穷多解!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式