将函数f(x)=1/(3x+2)^2展开成x的幂级数
2个回答
展开全部
f(x) = 1/(3x+2)^2 = (1/9)[1/(x+2/3)^2] = (-1/9) [1/(x+2/3)]'
= (-1/6) [1/(1+3x/2)]' = (-1/6) [∑<n=0,∞> (-1)^n*(3x/2)^n]'
= (1/6) [∑<n=0,∞> (-1)^(n+1)*(3/2)^n*x^n]'
= (1/6) ∑<n=1,∞> (-1)^(n+1)*(3/2)^n*nx^(n-1).
-1<3x/2<1, 收敛域 -2/3<x<2/3.
= (-1/6) [1/(1+3x/2)]' = (-1/6) [∑<n=0,∞> (-1)^n*(3x/2)^n]'
= (1/6) [∑<n=0,∞> (-1)^(n+1)*(3/2)^n*x^n]'
= (1/6) ∑<n=1,∞> (-1)^(n+1)*(3/2)^n*nx^(n-1).
-1<3x/2<1, 收敛域 -2/3<x<2/3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询