求f=t^2的拉普拉斯变换,求过程啊
f=t^2的拉普拉斯变换过程如下:
F(s)=∫(0-∞)f(t)e^(-st)dt
=∫(0-∞)(t^2)e^(-st)dt
设u=st,t=u/s,dt=(1/s)
则:F(s)=∫(0-∞)((u/s)^2)e^(-u)(1/s)
=(1/s^3)∫(0-∞)(u^2)e^(-u)
∫(0-∞)(u^2)e^(-u)du=2!
所以F(s)=2/s^3
拉普拉斯逆变换的公式:
对于所有的t>0,f(t)= mathcal ^ left=frac int_ ^ F(s)' e'ds,c' 是收敛区间的横坐标值,是一个实常数且大于所有F(s)' 的个别点的实部值。
如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t)。
只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。
F(s)=∫(0-∞)f(t)e^(-st)dt
=∫(0-∞)(t^2)e^(-st)dt
设u=st,t=u/s,dt=(1/s)
则:F(s)=∫(0-∞)((u/s)^2)e^(-u)(1/s)
=(1/s^3)∫(0-∞)(u^2)e^(-u)
∫(0-∞)(u^2)e^(-u)du=2!
所以F(s)=2/s^3
扩展资料:
拉普拉斯逆变换的公式是:对于所有的t>0,f(t)= mathcal ^ left=frac int_ ^ F(s)' e'ds,c' 是收敛区间的横坐标值,是一个实常数且大于所有F(s)' 的个别点的实部值。
如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t)。
只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。
过程:
F(s)=∫(0-∞)f(t)e^(-st)dt
=∫(0-∞)(t^2)e^(-st)dt
设u=st,t=u/s,dt=(1/s)du
则:F(s)=∫(0-∞)((u/s)^2)e^(-u)(1/s)du
=(1/s^3)∫(0-∞)(u^2)e^(-u)du
∫(0-∞)(u^2)e^(-u)du=2! (Gamma函数)
所以F(s)=2/s^3