函数y=sin^4x+cos^2x的最小正周期为?
展开全部
原橡悄式=Y=sin^2x(1-cos^2x)+cos^2x
=sin^2x-sin^2xcos^2x+cos^2x
=sin^2x+cos^2x-sin^2xcos^2x
=1-(sinxcosx)^2
=1-(1/2sin2x)^2
=1-1/4(sin2x)^2 ①
因为(sin2x)^2=(1-cos4x)/桐如型2
所以①=1-(1/4)*(1-cos4x)/2=1-1/8(1-cos4x)
=7/8+1/8cos4x
最小正周期是2∏/4= 1/局猜2∏
=sin^2x-sin^2xcos^2x+cos^2x
=sin^2x+cos^2x-sin^2xcos^2x
=1-(sinxcosx)^2
=1-(1/2sin2x)^2
=1-1/4(sin2x)^2 ①
因为(sin2x)^2=(1-cos4x)/桐如型2
所以①=1-(1/4)*(1-cos4x)/2=1-1/8(1-cos4x)
=7/8+1/8cos4x
最小正周期是2∏/4= 1/局猜2∏
追答
y=sin^4x+cos^2x
=1-sin^2x+sin^4x
=sin^2x(sin^2-1)+1
=-sin^2xcos^2x+1
=-(1/2sin2x)^2+1
=-1/8(1-cos4x)+1
=7/8+1/8cos4x
最小正周期为1/2π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询