整数幂到底是什么,求数学高手
2个回答
展开全部
问题:对于k^n,从1累加到m,求解
显然对于一次幂(自然数求和)高斯已经解决,事实上一次幂可以降幂成0次幂(也就是1)
降幂:对于k^n,我们要把他拆成两项,那只能是k^(n+1)-(k-1)^(n+1),该式用二次项定理展开后,n+1次幂会抵消掉,把含有k^n的那个项当成x解出来,大概就是k^n=(k^(n+1)-(k-1)^(n+1)+n(n-1)k^(n-1)+……),把这个式子两边累加,结果是∑k^n=m^(n+1)-(1-1)^(n+1)+…… 省略号代表的部分也是一个累加式,但是与原式相比,降幂。
对于任意阶的幂,连续降幂到0或者1,问题可解。
如果从j累加到i,那么我们可以先求从1到i的和,再减去从1到j的和。
显然对于一次幂(自然数求和)高斯已经解决,事实上一次幂可以降幂成0次幂(也就是1)
降幂:对于k^n,我们要把他拆成两项,那只能是k^(n+1)-(k-1)^(n+1),该式用二次项定理展开后,n+1次幂会抵消掉,把含有k^n的那个项当成x解出来,大概就是k^n=(k^(n+1)-(k-1)^(n+1)+n(n-1)k^(n-1)+……),把这个式子两边累加,结果是∑k^n=m^(n+1)-(1-1)^(n+1)+…… 省略号代表的部分也是一个累加式,但是与原式相比,降幂。
对于任意阶的幂,连续降幂到0或者1,问题可解。
如果从j累加到i,那么我们可以先求从1到i的和,再减去从1到j的和。
追问
谢谢
追答
不谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询