要详细的解题过程,谢谢啦!
1个回答
展开全部
a为锐角,cos(a+π/6)=4/5
所以,sin(a+π/6)=3/5
sin(2a+π/3)=2sin(a+π/6)cos(a+π/6)=2×(3/5)×(4/5)=24/25
cos(2a+π/3)=cos²(a+π/6)-sin²(a+π/6)=16/25-9/25=7/25
sin(2a+π/12)
=sin[(2a+π/3)-π/4]
=sin(2a+π/3)×cos(π/4)-cos(2a+π/3)×sin(π/4)
=(24/25)×(√2/2)-(7/25)×(√2/2)
=17√2/50
所以,sin(a+π/6)=3/5
sin(2a+π/3)=2sin(a+π/6)cos(a+π/6)=2×(3/5)×(4/5)=24/25
cos(2a+π/3)=cos²(a+π/6)-sin²(a+π/6)=16/25-9/25=7/25
sin(2a+π/12)
=sin[(2a+π/3)-π/4]
=sin(2a+π/3)×cos(π/4)-cos(2a+π/3)×sin(π/4)
=(24/25)×(√2/2)-(7/25)×(√2/2)
=17√2/50
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询