一道数学题谢谢大家了!
展开全部
设角PAB=X
则角PBC=90度-X
因为 角渣兄返PAB+角PDC=1/2角AOD=1/如饥2*90=45度
得 角PDC=45度-角PAB=45度-X
所以 角PCB=90度-角PDC=90度-45度+X=45度+X
由 PA/sin(角PAB)=PC/尘谈sin(角PBC)=BP/sin(角PCB)=2R [R为外接园半径]
得 PA/sin(X)=PC/sin(90度-X)=PC/sin(45度+X)=2R
(AP+CP)/BP=[sin(x)+sin(90-x)]/sin(45+x)
=2sin[1/2(x+90-x)*cos[1/2(x-90+x)]/sin(45+x)
=2sin(45)*cos(x-45))/sin(45+x)
=2sin(45)*cos[90-(45+x)]/sin(45+x)
=2sin(45)*sin(45+x)/sin(45+x) [cos(90-(45+x))=sin(45+x)]
=2sin(45)
=√2 (√2 表示根号2)
则角PBC=90度-X
因为 角渣兄返PAB+角PDC=1/2角AOD=1/如饥2*90=45度
得 角PDC=45度-角PAB=45度-X
所以 角PCB=90度-角PDC=90度-45度+X=45度+X
由 PA/sin(角PAB)=PC/尘谈sin(角PBC)=BP/sin(角PCB)=2R [R为外接园半径]
得 PA/sin(X)=PC/sin(90度-X)=PC/sin(45度+X)=2R
(AP+CP)/BP=[sin(x)+sin(90-x)]/sin(45+x)
=2sin[1/2(x+90-x)*cos[1/2(x-90+x)]/sin(45+x)
=2sin(45)*cos(x-45))/sin(45+x)
=2sin(45)*cos[90-(45+x)]/sin(45+x)
=2sin(45)*sin(45+x)/sin(45+x) [cos(90-(45+x))=sin(45+x)]
=2sin(45)
=√2 (√2 表示根号2)
展开全部
将三角形BCP旋转90度到三角形BAQ
角BPA是一个旦败毁定值,PC+PA=PQ
不难证明PQ/模备PB是一个定枯册值
角BPA是一个旦败毁定值,PC+PA=PQ
不难证明PQ/模备PB是一个定枯册值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询