学霸们!拜托了!!
3个回答
2014-10-16
展开全部
证明:(1)∵△ABC是等腰直角三角形,
∴∠MBE=45°,∴∠BME+∠MEB=135°
又∵△DEF是等腰直角三角形,∴∠DEF=45°
∴∠NEC+∠MEB=135°
∴∠BME=∠NEC,
而∠MBE=∠ECN=45°,
∴△BEM∽△CNE.
(2)与(1)同理△BEM∽△CNE,
∴ BECN=EMNE.
又∵BE=EC,
∴ ECCN=EMNE,
则△ECN与△MEN中有 ECCN=MEEN,
又∠ECN=∠MEN=45°,
∴△ECN∽△MEN.
∴∠MBE=45°,∴∠BME+∠MEB=135°
又∵△DEF是等腰直角三角形,∴∠DEF=45°
∴∠NEC+∠MEB=135°
∴∠BME=∠NEC,
而∠MBE=∠ECN=45°,
∴△BEM∽△CNE.
(2)与(1)同理△BEM∽△CNE,
∴ BECN=EMNE.
又∵BE=EC,
∴ ECCN=EMNE,
则△ECN与△MEN中有 ECCN=MEEN,
又∠ECN=∠MEN=45°,
∴△ECN∽△MEN.
追答
大姐,悬赏@( ̄- ̄)@
O(∩_∩)O
2014-10-16
展开全部
简单
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-10-16
展开全部
哦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询