线性规划问题
一、建立线性规划模型。某公司生产I、II两种产品,市场对I、II两种产品的需求量为:产品I在1—4月每月需10000件,5—9月每月40000件,10—12月每月1000...
一、建立线性规划模型。
某公司生产I、II两种产品,市场对I、II两种产品的需求量为:产品I在1—4月每月需10000件,5—9月每月40000件,10—12月每月100000件;产品II在3—9月每月15000件,其他月每月50000件。该公司生产这两种产品成本为:产品I在1—5月内生产每件5元,6—12月内生产每件4.5元;产品II在1—5月内生产每件8元,6—12月内生产每件7元。该公司每月生产这两种产品的能力总和不超过120000件。产品I容积每件0.2立方米,产品II每件0.4立方米,该公司仓库容量为15000立方米,占用公司仓库每月每立方米库容需1元;如该公司仓库不足时,可从外面租借,租用外面仓库每月每立方米库容需1.5元。试问在满足市场需求的情况下,该厂应如何安排生产,使总的生产加库存费用为最少? 展开
某公司生产I、II两种产品,市场对I、II两种产品的需求量为:产品I在1—4月每月需10000件,5—9月每月40000件,10—12月每月100000件;产品II在3—9月每月15000件,其他月每月50000件。该公司生产这两种产品成本为:产品I在1—5月内生产每件5元,6—12月内生产每件4.5元;产品II在1—5月内生产每件8元,6—12月内生产每件7元。该公司每月生产这两种产品的能力总和不超过120000件。产品I容积每件0.2立方米,产品II每件0.4立方米,该公司仓库容量为15000立方米,占用公司仓库每月每立方米库容需1元;如该公司仓库不足时,可从外面租借,租用外面仓库每月每立方米库容需1.5元。试问在满足市场需求的情况下,该厂应如何安排生产,使总的生产加库存费用为最少? 展开
1个回答
展开全部
解:(1)因为目标函数向左平移取最小值,向右平移取最大值,
所以要使目标函数为z=x+ay取得最小值的最优解有无数个,
使之与直线AC重合即可。
使z=0,则可求得目标函数曲线的斜率k=-1/a,
即:-1/a=(2-1)/(4-1)=1/3,
所以a=-3;
(2)目标函数为z=x+ay仅在(5,1)处取得最大值,
则使得目标函数向右平移与三角形ABC的最后重合点只有点B,
这时k>0时,都满足题意,这时a<0,
k<0时,须使k的斜率小于直线BC的斜率,即,k=-1/a<(2-1)/(4-5)=-1,
可求得,0<a<1,
综上所述,a的取值范围是,a<0或0<a<1,即a<1,a≠ 0.
这样可以么?
所以要使目标函数为z=x+ay取得最小值的最优解有无数个,
使之与直线AC重合即可。
使z=0,则可求得目标函数曲线的斜率k=-1/a,
即:-1/a=(2-1)/(4-1)=1/3,
所以a=-3;
(2)目标函数为z=x+ay仅在(5,1)处取得最大值,
则使得目标函数向右平移与三角形ABC的最后重合点只有点B,
这时k>0时,都满足题意,这时a<0,
k<0时,须使k的斜率小于直线BC的斜率,即,k=-1/a<(2-1)/(4-5)=-1,
可求得,0<a<1,
综上所述,a的取值范围是,a<0或0<a<1,即a<1,a≠ 0.
这样可以么?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询