高等数学上的数列收敛是什么意思?

根据定义的话,对任意的正数,总存在一个正整数,使该项以后的项都有到某个点距离小于任意正数。才有极限。那么有极限的数列一定单调吗?比如sin3n/3^n,这个数列应该收敛吧... 根据定义的话,对任意的正数,总存在一个正整数,使该项以后的项都有到某个点距离小于任意正数。才有极限。那么有极限的数列一定单调吗?比如sin3n/3^n,这个数列应该收敛吧 但是总感觉有地方怪怪的,求指导。 展开
 我来答
爱迪奥特曼_开
推荐于2017-09-28 · TA获得超过1830个赞
知道小有建树答主
回答量:766
采纳率:80%
帮助的人:361万
展开全部
有极限的数列不一定单调。
首先数列收敛的定义,对任取的e>0,存在N,当n>N,有 |a(n)-A|<e ;
满足上述定义,就称数列{a(n)}收敛,且收敛于A。
如数列a(n)=sin3n/3^n,分子有界,分母趋于正无穷大,
那么a(n)=sin3n/3^n收敛到0,但却不是单调的。
追问
就是说 只要e>=后面项里最大的就可以了吧
追答
任取的e>0,存在N,当n>N,有 |a(n)-A|<e
红眼的魔神
2014-10-07 · 超过65用户采纳过TA的回答
知道小有建树答主
回答量:211
采纳率:0%
帮助的人:129万
展开全部
我就记得单调有界必有极限这句话···
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式