如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上

如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)(1)若△CEF与△ABC相似.①当AC=BC=... 如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上) (1)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为     ;②当AC=3,BC=4时,AD的长为     ;(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由. 展开
 我来答
度受9nA
2014-11-19 · TA获得超过106个赞
知道答主
回答量:119
采纳率:50%
帮助的人:124万
展开全部
解:(1)①

(2)当点D是AB的中点时,△CEF与△ABC相似。理由如下:
如答图3所示,连接CD,与EF交于点Q,

∵CD是Rt△ABC的中线,∴CD=DB=AB,∴∠DCB=∠B。
由折叠性质可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°。
∵∠B+∠A=90°,∴∠CFE=∠A。
又∵∠C=∠C,∴△CEF∽△CBA。

(1)若△CEF与△ABC相似.
①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,

此时D为AB边中点,AD= AC=
②当AC=3,BC=4时,有两种情况:
(I)若CE:CF=3:4,如答图2所示,

∵CE:CF=AC:BC,∴EF∥BC。
由折叠性质可知,CD⊥EF,
∴CD⊥AB,即此时CD为AB边上的高。
在Rt△ABC中,AC=3,BC=4,∴BC=5。
∴cosA= 。∴AD=AC?cosA=3× =
(II)若CF:CE=3:4,如答图3所示.
∵△CEF∽△CAB,∴∠CEF=∠B。
由折叠性质可知,∠CEF+∠ECD=90°。
又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD。
同理可得:∠B=∠FCD,CD=BD。∴AD=BD。
∴此时AD=AB= ×5=
综上所述,当AC=3,BC=4时,AD的长为
(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式