z=arcsinx/y,而y=√x²+1求dz/dx
2个回答
展开全部
z = arcsin[x/√(x^2+1)],
dz/dx = {[√(x^2+1) - x^2/√(x^2+1)]/(x^2+1)}/√[1-x^2/(x^2+1)]
= {1/(x^2+1)^(3/2)}*√(x^2+1) = 1/(1+x^2)
dz/dx = {[√(x^2+1) - x^2/√(x^2+1)]/(x^2+1)}/√[1-x^2/(x^2+1)]
= {1/(x^2+1)^(3/2)}*√(x^2+1) = 1/(1+x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询