如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x

如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点... 如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由. 展开
 我来答
落日子昏昏4837
2015-02-01 · TA获得超过156个赞
知道答主
回答量:112
采纳率:100%
帮助的人:113万
展开全部
解:(1)由题意可知:
a+b+c=0
9a?3b+c=0
c=3

解得:
a=?1
b=?2
c=3

抛物线的解析式为:y=-x2-2x+3;

(2)∵△PBC的周长为:PB+PC+BC
∵BC是定值,
∴当PB+PC最小时,△PBC的周长最小,
∵点A、点B关于对称轴l对称,
∴连接AC交l于点P,即点P为所求的点
∵AP=BP
∴△PBC的周长最小是:PB+PC+BC=AC+BC
∵A(-3,0),B(1,0),C(0,3),
∴AC=3
2
,BC=
10

故△PBC周长的最小值为3
2
+
10


(3)①∵
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式