如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、A
如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN,(1)求证:△ADN≌△CBM;(2)请连接MF、N...
如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN,(1)求证:△ADN≌△CBM;(2)请连接MF、NE,证明四边形MFNE是平行四边形;四边形MFNE是菱形吗?请说明理由;(3)点P、Q是矩形的边CD、AB上的两点,连接PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的长度.
展开
1个回答
展开全部
(1)证明:由折叠的性质得盯樱出∠DAN=∠NAC,∠BCM=∠返察ACM,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠DAN=∠BCM,
在Rt△ADN和Rt△CBM中凯世丛,
∵
,
∴△ADN≌△CBM,
(2)解:连接NE、MF,
∵△ADN≌△CBM,
∴NF=ME,
∵∠NFE=∠MEF,
∴NF∥ME,
∴四边形MFNE是平行四边形,
∵MN与EF不垂直,
∴四边形MFNE不是菱形;
(3)解:设AC与MN的交点为O,EF=x,作QG⊥PC于G点,
∵AB=4,BC=3,
∴AC=5,
∵AF=CE=BC=3,
∴2AF-EF=AC,即6-x=5,
解得x=1,
∴EF=1,
∴CF=2,
在Rt△CFN中,tan∠DCA=
=
=
,
解得NF=
,
∵OE=OF=
EF=
,
∴在Rt△NFO中,ON2=OF2+NF2,
∴ON=
,
∴MN=2ON=
,
∵PQ∥MN,PN∥MQ,
∴四边形MQPN是平行四边形,
∴MN=PQ=
,
∵PQ=CQ,
∴△PQC是等腰三角形,
∴PG=CG,
在Rt△QPG中,
PG2=PQ2-QG2,即PG=
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠DAN=∠BCM,
在Rt△ADN和Rt△CBM中凯世丛,
∵
|
∴△ADN≌△CBM,
(2)解:连接NE、MF,
∵△ADN≌△CBM,
∴NF=ME,
∵∠NFE=∠MEF,
∴NF∥ME,
∴四边形MFNE是平行四边形,
∵MN与EF不垂直,
∴四边形MFNE不是菱形;
(3)解:设AC与MN的交点为O,EF=x,作QG⊥PC于G点,
∵AB=4,BC=3,
∴AC=5,
∵AF=CE=BC=3,
∴2AF-EF=AC,即6-x=5,
解得x=1,
∴EF=1,
∴CF=2,
在Rt△CFN中,tan∠DCA=
NF |
CF |
BC |
AB |
3 |
4 |
解得NF=
3 |
2 |
∵OE=OF=
1 |
2 |
1 |
2 |
∴在Rt△NFO中,ON2=OF2+NF2,
∴ON=
| ||
2 |
∴MN=2ON=
10 |
∵PQ∥MN,PN∥MQ,
∴四边形MQPN是平行四边形,
∴MN=PQ=
10 |
∵PQ=CQ,
∴△PQC是等腰三角形,
∴PG=CG,
在Rt△QPG中,
PG2=PQ2-QG2,即PG=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|