设数列{an}满足a1+2a2+3a3+4a4+…+nan=n,n∈N*.(1)求数列{an}的通项;(2)设bn=2n?1an,求数列{bn}
设数列{an}满足a1+2a2+3a3+4a4+…+nan=n,n∈N*.(1)求数列{an}的通项;(2)设bn=2n?1an,求数列{bn}的前n项和Sn....
设数列{an}满足a1+2a2+3a3+4a4+…+nan=n,n∈N*.(1)求数列{an}的通项;(2)设bn=2n?1an,求数列{bn}的前n项和Sn.
展开
1个回答
展开全部
(1)∵a1+2a2+3a3+…+nan=n①,
∴n≥2时,a1+2a2+3a3+…+(n-1)an-1=n-1②
∴①-②可得nan=1,∴an=
(n≥2)
又a1=1也满足上式,∴数列{an}的通项为an=
;
(2)bn=
=n?2n-1,
∴Sn=1+2×2+3×22+…+n×2n-1
则2Sn=4+2×22+3×23+…+(n-1)?2n-1+n?2n
相减得Sn=n?2n-(1+2+22+23+…+2n-1)=(n-1)2n+1
∴Sn=(n-1)?2n+1(n∈N*).
∴n≥2时,a1+2a2+3a3+…+(n-1)an-1=n-1②
∴①-②可得nan=1,∴an=
1 |
n |
又a1=1也满足上式,∴数列{an}的通项为an=
1 |
n |
(2)bn=
2n?1 |
an |
∴Sn=1+2×2+3×22+…+n×2n-1
则2Sn=4+2×22+3×23+…+(n-1)?2n-1+n?2n
相减得Sn=n?2n-(1+2+22+23+…+2n-1)=(n-1)2n+1
∴Sn=(n-1)?2n+1(n∈N*).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询