如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影

如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD,(Ⅰ)... 如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO= ,PB⊥PD,(Ⅰ)求异面直接PD与BC所成角的余弦值;(Ⅱ)求二面角P-AB-C的大小; (Ⅲ)设点M在棱PC上,且 =λ,问λ为何值时,PC⊥平面BMD。 展开
 我来答
谈芮Wa
推荐于2016-06-25 · 超过71用户采纳过TA的回答
知道答主
回答量:136
采纳率:0%
帮助的人:135万
展开全部
解:∵PO⊥平面ABCD,
∴PO⊥BD,

由平面几何知识得:
(Ⅰ)过D作DE∥BC交AB于E,连结PE,
则∠PDE或其补角为异面直线PD与BC所成的角,
∵四边形ABCD是等腰梯形,


又AB∥DC,
∴四边形EBCD是平行四边形。

∴E是AB的中点,且

∴△PEA为直角三角形,

在△PED中,由余弦定理得

故异面直线PD与BC所成的角的余弦值为
(Ⅱ)连结OE,由(Ⅰ)及三垂线定理知,
∠PEO为二面角P-AB-C的平面角,


∴二面角P-AB-C的大小为45°。
(Ⅲ)连结MD,MB,MO,
平面 平面BMD,
∵PC⊥OM,
又在Rt△POC中,


故λ=2时,PC⊥平面BMD。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式