
如图(1)所示,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与x轴交于A、B两点
如图(1)所示,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),与y轴交于点...
如图(1)所示,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),与y轴交于点C,且OB=OC,又tan∠ACO=13.①求这个函数的表达式.②经过C.D两点的直线与x轴交于点E,在抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,求点F的坐标.③如图(2)所示,若G(2,t)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求此时P点的坐标和△APG的最大面积.
展开
1个回答
展开全部
(1)方法一:∵点B的坐标为(3,0),与y轴交于点C,且OB=OC,又tan∠ACO=
.
∴tan∠ACO=
=
,
∴AO=1,
∴C(0,-3),A(-1,0),
将A、B、C三点的坐标代入得
,
解得:
,
所以这个二次函数的表达式为:y=x2-2x-3
方法二:由已知得:C(0,-3),A(-1,0),
设该表达式为:y=a(x+1)(x-3),
将C点的坐标代入得:a=1,
所以这个二次函数的表达式为:y=x2-2x-3;
(注:表达式的最终结果用三种形式中的任一种都不扣分)
(2)如图,在y=x2-2x-3中,令x=0,得y=-3.
令y=0,得x2-2x-3=0,∴x1=-1,x2=3.
∴A(-1,0),B(3,0),C(0,-3).
又y=(x-1)2-4,∴顶点D(1,-4).
容易求得直线CD的表达式是y=-x-3.
在y=-x-3中,令y=0,得x=-3.
∴E(-3,0),
∴AE=2.
在y=x2-2x-3中,令y=-3,得x1=0,x2=2,
∴CF=2,
∴AE=CF.
∵AE∥CF,
∴四边形AECF为平行四边形,此时F(2,-3).
(3)过点P作y轴的平行线与AG交于点Q,
易得G(2,-3),直线AG为y=-x-1;
设P(x,x2-2x-3),则Q(x,-x-1),PQ=-x2+x+2;
S△APG=S△APQ+S△GPQ=
(?x2+x+2)×3=?
(x?
)2+
,
当x=
时,△APG的面积最大为
;
∵AG=3
,P到AG的最大距离为
=
=
,
此时P点的坐标为(
,?
).
1 |
3 |
∴tan∠ACO=
AO |
CO |
1 |
3 |
∴AO=1,
∴C(0,-3),A(-1,0),
将A、B、C三点的坐标代入得
|
解得:
|
所以这个二次函数的表达式为:y=x2-2x-3
方法二:由已知得:C(0,-3),A(-1,0),
设该表达式为:y=a(x+1)(x-3),
将C点的坐标代入得:a=1,
所以这个二次函数的表达式为:y=x2-2x-3;
(注:表达式的最终结果用三种形式中的任一种都不扣分)
(2)如图,在y=x2-2x-3中,令x=0,得y=-3.
令y=0,得x2-2x-3=0,∴x1=-1,x2=3.
∴A(-1,0),B(3,0),C(0,-3).
又y=(x-1)2-4,∴顶点D(1,-4).
容易求得直线CD的表达式是y=-x-3.
在y=-x-3中,令y=0,得x=-3.
∴E(-3,0),
∴AE=2.
在y=x2-2x-3中,令y=-3,得x1=0,x2=2,
∴CF=2,
∴AE=CF.
∵AE∥CF,
∴四边形AECF为平行四边形,此时F(2,-3).
易得G(2,-3),直线AG为y=-x-1;
设P(x,x2-2x-3),则Q(x,-x-1),PQ=-x2+x+2;
S△APG=S△APQ+S△GPQ=
1 |
2 |
3 |
2 |
1 |
2 |
27 |
8 |
当x=
1 |
2 |
27 |
8 |
∵AG=3
2 |
2S△APG |
AG |
2×
| ||
3
|
9 |
8 |
2 |
此时P点的坐标为(
1 |
2 |
15 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询