如图,在等腰Rt△ABC中,∠ACB=90°,F是AB边上的中点,点D,E分别在AC,BC边上运动,且始终保持AD=CE,
如图,在等腰Rt△ABC中,∠ACB=90°,F是AB边上的中点,点D,E分别在AC,BC边上运动,且始终保持AD=CE,连接DE,DF,EF.探究:(1)在整个运动过程...
如图,在等腰Rt△ABC中,∠ACB=90°,F是AB边上的中点,点D,E分别在AC,BC边上运动,且始终保持AD=CE,连接DE,DF,EF.探究:(1)在整个运动过程中,△DEF的形状是______;(2)指出线段AD、BE与AC间的数量关系,并说明理由.(3)若AB=10cm,求四边形DCEF的面积.
展开
展开全部
(1)等腰直角三角形,
理由如下:
在等腰直角△ABC中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
又∵F是AB中点,
∴∠ACF=∠FCB=45°,
即,∠A=∠FCE=∠ACF=45°,且AF=CF,
在△ADF与△CEF中,
,
∴△ADF≌△CEF(SAS),
∴DF=FE,
∴△DFE是等腰三角形,
又∵∠AFD=∠CFE,
∴∠AFD+∠DFC=∠CFE+∠DFC,
∴∠AFC=∠DFE,
∵∠AFC=90°,
∴∠DFE=90°,
∴△DFE是等腰直角三角形;
故答案为:等腰直角三角形;
(2)AC=BE+AD,
由(1)可知△ADF≌△CEF,
∴AD=CE,∵CA=CB,
∴CD=BE,
∴AC=AD+CD=BE+AD;
(3)∵AB=10cm,
∴CF=
AB=5cm,
∴S△ABC=
×10×5=25,
∴四边形DCEF的面积=
S△ABC=
×25=
.
理由如下:
在等腰直角△ABC中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
又∵F是AB中点,
∴∠ACF=∠FCB=45°,
即,∠A=∠FCE=∠ACF=45°,且AF=CF,
在△ADF与△CEF中,
|
∴△ADF≌△CEF(SAS),
∴DF=FE,
∴△DFE是等腰三角形,
又∵∠AFD=∠CFE,
∴∠AFD+∠DFC=∠CFE+∠DFC,
∴∠AFC=∠DFE,
∵∠AFC=90°,
∴∠DFE=90°,
∴△DFE是等腰直角三角形;
故答案为:等腰直角三角形;
(2)AC=BE+AD,
由(1)可知△ADF≌△CEF,
∴AD=CE,∵CA=CB,
∴CD=BE,
∴AC=AD+CD=BE+AD;
(3)∵AB=10cm,
∴CF=
1 |
2 |
∴S△ABC=
1 |
2 |
∴四边形DCEF的面积=
1 |
2 |
1 |
2 |
25 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询