
平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q.试说明PQ与MN互相平分
平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q.试说明PQ与MN互相平分....
平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q.试说明PQ与MN互相平分.
展开
展开全部
证明:
∵四边形ABCD是平行四边形,
∴AB=DC,AB∥CD,
∵M、N分别是AB、CD的中点,
∴DN=CN=
DC,AM=BM=
AB,
∴DN∥BM,DN=BM,
∴四边形DMBN是平行四边形,
∴PM∥NQ,
同理:PN∥MQ,
∴四边形PNQM为平行四边形,
∴PQ与MN互相平分.
∵四边形ABCD是平行四边形,
∴AB=DC,AB∥CD,
∵M、N分别是AB、CD的中点,
∴DN=CN=
1 |
2 |
1 |
2 |
∴DN∥BM,DN=BM,
∴四边形DMBN是平行四边形,
∴PM∥NQ,
同理:PN∥MQ,
∴四边形PNQM为平行四边形,
∴PQ与MN互相平分.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询