2个回答
展开全部
∫ dx/[x√(x+1)]
=2∫ (1/x) d√(x+1)
=2√(x+1) /x +2∫ √(x+1) /x^2 dx
let
x= (tany)^2
dx = 2tany(secy)^2 dy
∫ √(x+1) /x^2 dx
=∫ [secy /(tany)^4] [2tany(secy)^2 dy]
=2∫ (cscy)^3dy
consider
∫ (cscy)^3dy = -∫ cscy.dcoty
= - cscy.coty -∫ (coty)^2. cscy.dy
2∫ (cscy)^3dy =- cscy.coty +∫ cscy.dy
=- cscy.coty +ln|cscy-coty|
=-√[(x+1)/x] + ln|√ [(x+1)/x] - √(1/x)|
∫ dx/[x√(x+1)]
=2√(x+1) /x +2∫ √(x+1) /x^2 dx
=2√(x+1) /x +4∫ (cscy)^3dy
=2√(x+1) /x +2[-√[(x+1)/x] + ln|√ [(x+1)/x] - √(1/x)| ] + C
=2∫ (1/x) d√(x+1)
=2√(x+1) /x +2∫ √(x+1) /x^2 dx
let
x= (tany)^2
dx = 2tany(secy)^2 dy
∫ √(x+1) /x^2 dx
=∫ [secy /(tany)^4] [2tany(secy)^2 dy]
=2∫ (cscy)^3dy
consider
∫ (cscy)^3dy = -∫ cscy.dcoty
= - cscy.coty -∫ (coty)^2. cscy.dy
2∫ (cscy)^3dy =- cscy.coty +∫ cscy.dy
=- cscy.coty +ln|cscy-coty|
=-√[(x+1)/x] + ln|√ [(x+1)/x] - √(1/x)|
∫ dx/[x√(x+1)]
=2√(x+1) /x +2∫ √(x+1) /x^2 dx
=2√(x+1) /x +4∫ (cscy)^3dy
=2√(x+1) /x +2[-√[(x+1)/x] + ln|√ [(x+1)/x] - √(1/x)| ] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询