已知f(x)=loga(x+1),g(x)=2loga(2x+t)(a>1),若x∈[0,1],t∈[4,6)时,F(x)=g(x)-f(

已知f(x)=loga(x+1),g(x)=2loga(2x+t)(a>1),若x∈[0,1],t∈[4,6)时,F(x)=g(x)-f(x)有最小值4,则a的值是___... 已知f(x)=loga(x+1),g(x)=2loga(2x+t)(a>1),若x∈[0,1],t∈[4,6)时,F(x)=g(x)-f(x)有最小值4,则a的值是______. 展开
 我来答
浦白炜st
推荐于2016-04-27 · TA获得超过322个赞
知道答主
回答量:119
采纳率:0%
帮助的人:118万
展开全部
∵f(x)=loga(x+1),g(x)=2loga(2x+t)(a>1),x∈[0,1),t∈[4,6)时,F(x)=g(x)-f(x)有最小值是4,
∴F(x)=g(x)-f(x)=
log
(2x+t)2
x+1
a
,x∈[0,1),t∈[4,6),
∵a>1,
∴令h(x)=
(2x+t)2
x+1
=
[2(x+1)+(t?2)]2
x+1
=4(x+1)+4(t-2)+
(t?2)2
x+1

∵0≤x<1,4≤t<6,
∴h(x)=4(x+1)+
(t?2)2
x+1
+4(t-2)在[0,1)上单调递增,
∴h(x)min=h(0)=4+(t-2)2+4(t-2)=[(t-2)+2]2=t2
∴F(x)min=logat2=4,
∴a4=t2
∵4≤t<6,
∴a4=16,
∴a=2.
故答案为:2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式