(2014?河南二模)如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5.求:(Ⅰ)⊙O的半径

(2014?河南二模)如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5.求:(Ⅰ)⊙O的半径;(Ⅱ)sin∠BAP的值.... (2014?河南二模)如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5.求:(Ⅰ)⊙O的半径;(Ⅱ)sin∠BAP的值. 展开
 我来答
小男人渎N90
2015-02-10 · TA获得超过115个赞
知道答主
回答量:107
采纳率:0%
帮助的人:126万
展开全部
解答:解:(Ⅰ)因为PA为⊙O的切线,所以PA2=PB?PC,
又由PA=10,PB=5,所以PC=20,BC=20-5=15      …(2分).
因为BC为⊙O的直径,所以⊙O的半径为7.5.…(4分)
(Ⅱ)∵PA为⊙O的切线,∴∠ACB=∠PAB,…(5分)
又由∠P=∠P,∴△PAB∽△PCA,
AB
AC
PB
PA
5
10
1
2
…(7分)
设AB=k,AC=2k,
∵BC为⊙O的直径,
∴AB⊥AC,
BC=
k2+(2k)2
5
k
…(8分)
∴sin∠BAP=sin∠ACB=
AB
BC
k
5
k
5
5
…(10分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式