已知函数f(x)=(x+1)lnx.(1)求f(x)在x=1处的切线方程;(2)设g(x)=1a(1?x)f(x),对任意x∈(0
已知函数f(x)=(x+1)lnx.(1)求f(x)在x=1处的切线方程;(2)设g(x)=1a(1?x)f(x),对任意x∈(0,1),g(x)<-2,求实数a的取值范...
已知函数f(x)=(x+1)lnx.(1)求f(x)在x=1处的切线方程;(2)设g(x)=1a(1?x)f(x),对任意x∈(0,1),g(x)<-2,求实数a的取值范围.
展开
1个回答
展开全部
(本小题满分12分)
解:(1)函数f(x)=(x+1)lnx定义域为(0,+∞),…(1分)
∵f′(x)=lnx+
,
∴f′(1)=2,且切点为(1,0)…(4分)
故f(x)在x=1处的切线方程y=2x-2.…-(6分)
(2)由已知a≠0,因为x∈(0,1),
所以
?lnx<0.
①当a<0时,g(x)>0,不合题意.…(8分)
②当a>0时,x∈(0,1),
由g(x)<-2,得lnx+
<0.
设h(x)=lnx+
,
则x∈(0,1),h(x)<0.h′(x)=
.
设m(x)=x2+(2-4a)x+1,
方程m(x)=0的判别式△=16a(a-1).
若a∈(0,1],△≤0,m(x)≥0,h′(x)≥0,
h(x)在(0,1)上是增函数,又h(1)=0,
所以x∈(0,1),h(x)<0.…(10分)
若a∈(1,+∞),△>0,m(0)=1>0,m(1)=4(1-a)<0,
所以存在x0∈(0,1),使得m(x0)=0,
对任意x∈(x0,1),m(x)<0,h′(x)<0,h(x)在(x0,1)上是减函数,
又h(1)=0,所以x∈(x0,1),h(x)>0.
综上,实数a的取值范围是(0,1].…(12分)
解:(1)函数f(x)=(x+1)lnx定义域为(0,+∞),…(1分)
∵f′(x)=lnx+
1+x |
x |
∴f′(1)=2,且切点为(1,0)…(4分)
故f(x)在x=1处的切线方程y=2x-2.…-(6分)
(2)由已知a≠0,因为x∈(0,1),
所以
1+x |
1?x |
①当a<0时,g(x)>0,不合题意.…(8分)
②当a>0时,x∈(0,1),
由g(x)<-2,得lnx+
2a(1?x) |
1+x |
设h(x)=lnx+
2a(1?x) |
1+x |
则x∈(0,1),h(x)<0.h′(x)=
x2+(2?4a)x+1 |
x(1+x)2 |
设m(x)=x2+(2-4a)x+1,
方程m(x)=0的判别式△=16a(a-1).
若a∈(0,1],△≤0,m(x)≥0,h′(x)≥0,
h(x)在(0,1)上是增函数,又h(1)=0,
所以x∈(0,1),h(x)<0.…(10分)
若a∈(1,+∞),△>0,m(0)=1>0,m(1)=4(1-a)<0,
所以存在x0∈(0,1),使得m(x0)=0,
对任意x∈(x0,1),m(x)<0,h′(x)<0,h(x)在(x0,1)上是减函数,
又h(1)=0,所以x∈(x0,1),h(x)>0.
综上,实数a的取值范围是(0,1].…(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询