已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,将∠MBN绕点B旋转.当∠MBN旋转到
已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,将∠MBN绕点B旋转.当∠MBN旋转到如图的位置,此时∠MBN的两边分别交...
已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,将∠MBN绕点B旋转.当∠MBN旋转到如图的位置,此时∠MBN的两边分别交AD、DC于E、F,且AE≠CF.延长DC至点K,使CK=AE,连接BK.求证:(1)△ABE≌△CBK;(2)∠KBC+∠CBF=60°;(3)CF+AE=EF.
展开
展开全部
解答:证明:(1)在△ABE和△CBK中,
,
∴△ABE≌△CBK(SAS).
(2)∵△ABE≌△CBK,
∴BE=BK,∠ABE=∠KBC,
∵∠ABE+∠CBE=120°,
∴∠KBC+∠CBE=120°,
即∠KBE=120°,
∵∠EBF=60°,
∴∠KBF=∠EBF=60°.
∴∠KBC+∠CBF=60°;
(3)在△EBF和△KBF中,
,
∴△EBF≌△KBF(SAS).
∴EF=KF.
∴EF=CK+CF.
∴AE+CF=EF.
|
∴△ABE≌△CBK(SAS).
(2)∵△ABE≌△CBK,
∴BE=BK,∠ABE=∠KBC,
∵∠ABE+∠CBE=120°,
∴∠KBC+∠CBE=120°,
即∠KBE=120°,
∵∠EBF=60°,
∴∠KBF=∠EBF=60°.
∴∠KBC+∠CBF=60°;
(3)在△EBF和△KBF中,
|
∴△EBF≌△KBF(SAS).
∴EF=KF.
∴EF=CK+CF.
∴AE+CF=EF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询