[e的(x^2)次方]的积分是什么
∫e^(x^2)dx
=xe^(x^2)-∫xe^(x^2)dx
=xe^(x^2)-1/2∫e^(x^2)dx^2
=xe^(x^2)-1/2e^(x^2)+c
=(x-1/2)e^(x^2)+c
对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
扩展资料:
积分是线性的,如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
(x-1/2)e^(x^2)+c
∫e^(x^2)dx
=xe^(x^2)-∫xe^(x^2)dx
=xe^(x^2)-1/2∫e^(x^2)dx^2
=xe^(x^2)-1/2e^(x^2)+c
=(x-1/2)e^(x^2)+c
对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。
积分:
积分是线性的,如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
其结果只能查正态分布积分表。
特殊情况 ∫ xe^(x²) dx = 0.5 e^(x²) + c.
=1/2∫e^(x^2)d(x^2)
(这里x^2求导变2x,因此乘1/2)
=1/2e^(x^2)
(将e^x看成整体,一个未知数)