
如何证明非齐次方程组的解与对应的齐次方程组的解线性无关
展开全部
设非齐次线性方程组AX=b的特解为 X(0);导出组的一个基础解系为
X(1),X(2),……,X(n-r);
反设上述向量线性相关,则存在不全为零的数C(i)使得
C(0)X(0)+C(1)X(1)+C(2)X(2)+……+C(n-r)X(n-r)=0
等号两边同时乘以A,左边成为b,右边却是0.这与b不等于零向量矛盾.
η1,η2.ηk 是基础解系.所以η1,η2.ηk线性无关.
(η0,η1+η0,η2+η0.ηk+η0)=(η0,η1,η2.ηk )
所以证明(η0,η1+η0,η2+η0.ηk+η0)无关也就是证明(η0,η1,η2.ηk )无关,
我们知道,如果a1,a2.an无关,而a1,a2.an,β相关,则β可以由a1,a2.an表示,且表示法唯一.
反证法:设(η0,η1,η2.ηk )相关,又因为η1,η2.ηk线性无关.则η0可以由
η1,η2.ηk线性表示,且表示法唯一.
显然,其次方程组Ax=0的基础解系,不一定能表示非其次方程组Ax=b的特解.所以矛盾.
(假设非其次方程组一个特解为b,其次方程组通解为k1a1+k2a2,则非其次方程组的通解为
k1a1+k2a2+b,如果b可以被a1,a2表示,则通解可以化为k1a1+k2a2+k3a1+k4a1=(k1+k3)a1+(k2+k4)a2,这其实是其次方程组Ax=0的解,而不是非其次方程组Ax=b的解)
则(η0,η1,η2.ηk )无关,则(η0,η1+η0,η2+η0.ηk+η0)无关.
展开全部
η1,η2.ηk 是基础解系.所以η1,η2.ηk线性无关.
(η0,η1+η0,η2+η0.ηk+η0)=(η0,η1,η2.ηk )
所以证明(η0,η1+η0,η2+η0.ηk+η0)无关也就是证明(η0,η1,η2.ηk )无关,
我们知道,如果a1,a2.an无关,而a1,a2.an,β相关,则β可以由a1,a2.an表示,且表示法唯一.
反证法:设(η0,η1,η2.ηk )相关,又因为η1,η2.ηk线性无关.则η0可以由
η1,η2.ηk线性表示,且表示法唯一.
显然,其次方程组Ax=0的基础解系,不一定能表示非其次方程组Ax=b的特解.所以矛盾.
(假设非其次方程组一个特解为b,其次方程组通解为k1a1+k2a2,则非其次方程组的通解为
k1a1+k2a2+b,如果b可以被a1,a2表示,则通解可以化为k1a1+k2a2+k3a1+k4a1=(k1+k3)a1+(k2+k4)a2,这其实是其次方程组Ax=0的解,而不是非其次方程组Ax=b的解)
则(η0,η1,η2.ηk )无关,则(η0,η1+η0,η2+η0.ηk+η0)无关.
(η0,η1+η0,η2+η0.ηk+η0)=(η0,η1,η2.ηk )
所以证明(η0,η1+η0,η2+η0.ηk+η0)无关也就是证明(η0,η1,η2.ηk )无关,
我们知道,如果a1,a2.an无关,而a1,a2.an,β相关,则β可以由a1,a2.an表示,且表示法唯一.
反证法:设(η0,η1,η2.ηk )相关,又因为η1,η2.ηk线性无关.则η0可以由
η1,η2.ηk线性表示,且表示法唯一.
显然,其次方程组Ax=0的基础解系,不一定能表示非其次方程组Ax=b的特解.所以矛盾.
(假设非其次方程组一个特解为b,其次方程组通解为k1a1+k2a2,则非其次方程组的通解为
k1a1+k2a2+b,如果b可以被a1,a2表示,则通解可以化为k1a1+k2a2+k3a1+k4a1=(k1+k3)a1+(k2+k4)a2,这其实是其次方程组Ax=0的解,而不是非其次方程组Ax=b的解)
则(η0,η1,η2.ηk )无关,则(η0,η1+η0,η2+η0.ηk+η0)无关.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
η1,η2.ηk 是基础解系.所以η1,η2.ηk线性无关.
(η0,η1+η0,η2+η0.ηk+η0)=(η0,η1,η2.ηk )
所以证明(η0,η1+η0,η2+η0.ηk+η0)无关也就是证明(η0,η1,η2.ηk )无关,
我们知道,如果a1,a2.an无关,而a1,a2.an,β相关,则β可以由a1,a2.an表示,且表示法唯一.
反证法:设(η0,η1,η2.ηk )相关,又因为η1,η2.ηk线性无关.则η0可以由
η1,η2.ηk线性表示,且表示法唯一.
显然,其次方程组Ax=0的基础解系,不一定能表示非其次方程组Ax=b的特解.所以矛盾.
(假设非其次方程组一个特解为b,其次方程组通解为k1a1+k2a2,则非其次方程组的通解为
k1a1+k2a2+b,如果b可以被a1,a2表示,则通解可以化为k1a1+k2a2+k3a1+k4a1=(k1+k3)a1+(k2+k4)a2,这其实是其次方程组Ax=0的解,而不是非其次方程组Ax=b的解)
则(η0,η1,η2.ηk )无关,则(η0,η1+η0,η2+η0.ηk+η0)无关.
(η0,η1+η0,η2+η0.ηk+η0)=(η0,η1,η2.ηk )
所以证明(η0,η1+η0,η2+η0.ηk+η0)无关也就是证明(η0,η1,η2.ηk )无关,
我们知道,如果a1,a2.an无关,而a1,a2.an,β相关,则β可以由a1,a2.an表示,且表示法唯一.
反证法:设(η0,η1,η2.ηk )相关,又因为η1,η2.ηk线性无关.则η0可以由
η1,η2.ηk线性表示,且表示法唯一.
显然,其次方程组Ax=0的基础解系,不一定能表示非其次方程组Ax=b的特解.所以矛盾.
(假设非其次方程组一个特解为b,其次方程组通解为k1a1+k2a2,则非其次方程组的通解为
k1a1+k2a2+b,如果b可以被a1,a2表示,则通解可以化为k1a1+k2a2+k3a1+k4a1=(k1+k3)a1+(k2+k4)a2,这其实是其次方程组Ax=0的解,而不是非其次方程组Ax=b的解)
则(η0,η1,η2.ηk )无关,则(η0,η1+η0,η2+η0.ηk+η0)无关.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设非齐次线性方程组AX=b的特解为 X(0);导出组的一个基础解系为
X(1),X(2),……,X(n-r);
反设上述向量线性相关,则存在不全为零的数C(i)使得
C(0)X(0)+C(1)X(1)+C(2)X(2)+……+C(n-r)X(n-r)=0
等号两边同时乘以A,左边成为b,右边却是0.这与b不等于零向量矛盾.
X(1),X(2),……,X(n-r);
反设上述向量线性相关,则存在不全为零的数C(i)使得
C(0)X(0)+C(1)X(1)+C(2)X(2)+……+C(n-r)X(n-r)=0
等号两边同时乘以A,左边成为b,右边却是0.这与b不等于零向量矛盾.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询