已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD。

已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD。求证:(1)△ABD≌△CFD;(2)BE⊥A... 已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD。 求证:(1)△ABD≌△CFD;(2)BE⊥AC. 展开
 我来答
纪念死去x9
推荐于2017-09-27 · TA获得超过114个赞
知道答主
回答量:104
采纳率:0%
帮助的人:134万
展开全部
(1)证明见解析;(2) 证明见解析.


试题分析:(1)由垂直的性质推出∠ADC=∠FDB=90°,再由∠ACB=45°,推出∠ACB=∠DAC=45°,即可求得AD=CD,根据全等三角形的判定定理“ASA”,即可推出结论;(2)由(1)的结论推出BD=DF,根据AD⊥BC,即可推出∠DBF=∠DFB=45°,再由∠ACB=45°,通过三角形内角和定理即可推出∠BEC=90°,即BE⊥AC.
试题解析:(1)∵AD⊥BC,
∴∠ADC=∠ADB=90°,
又∵∠ACB=45°,
∴∠DAC=45°,
∴∠ACB=∠DAC,
∴AD=CD,
在△ABD和△CFD中,∠BAD=∠FCD, AD=CD∠ADB=∠FDC,
∴△ABD≌△CFD;
(2)∵△ABD≌△CFD,
∴BD=FD,      
∴∠1=∠2,
又∵∠FDB=90°,
∴∠1=∠2=45°,
又∵∠ACD=45°,
∴△BEC中,∠BEC=90°,
∴BE⊥AC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式