平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,求证:∠BPD=∠B-
平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,求证:∠BPD=∠B-∠D;(2)将点P移到AB、CD内部,如图2,(1)中的...
平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,求证:∠BPD=∠B-∠D;(2)将点P移到AB、CD内部,如图2,(1)中的结论是否成立?若成立,说明理由:若不成立,则∠BPD、∠B、∠D之间有何数量关系?不必说明理由;(3)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;(4)在图4中,若∠A+∠B+∠C+∠D+∠E+∠F+∠G=n×90°,则n=______.
展开
3个回答
展开全部
(1)∵AB∥CD,
∴∠B=∠BOD,
而∠BOD=∠BPD+∠D,
∴∠B=∠BPD+∠D,
即∠BPD=∠B-∠D;
(2)(1)中的结论不成立,∠BPD=∠B+∠D.
作PQ∥AB,如图2,
∵AB∥CD,
∴AB∥PQ∥CD,
∴∠1=∠B,∠2=∠D,
∴∠BPD=∠B+∠D;
(3)∠BPD=∠B+∠D+∠BQD.理由如下:
连结QP并延长到E,如图3,
∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,
∴∠1+∠2=∠B+∠BQP+∠D+∠DQP,
∴∠BPD=∠B+∠D+∠BQD;
(4)连结AG,如图4,
∵∠B+∠F=∠BGA+∠FAG,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°,
∴n=6.
故答案为6.
∴∠B=∠BOD,
而∠BOD=∠BPD+∠D,
∴∠B=∠BPD+∠D,
即∠BPD=∠B-∠D;
(2)(1)中的结论不成立,∠BPD=∠B+∠D.
作PQ∥AB,如图2,
∵AB∥CD,
∴AB∥PQ∥CD,
∴∠1=∠B,∠2=∠D,
∴∠BPD=∠B+∠D;
(3)∠BPD=∠B+∠D+∠BQD.理由如下:
连结QP并延长到E,如图3,
∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,
∴∠1+∠2=∠B+∠BQP+∠D+∠DQP,
∴∠BPD=∠B+∠D+∠BQD;
(4)连结AG,如图4,
∵∠B+∠F=∠BGA+∠FAG,
∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°,
∴n=6.
故答案为6.
展开全部
∵AB∥CD,
∴∠B=∠BOD,而∠BOD=∠BPD+∠D,∴∠B=∠BPD+∠D,即∠BPD=∠B-∠D;(2)(1)中的结论不成立,∠BPD=∠B+∠D.作PQ∥AB,如图2,∵AB∥CD,∴AB∥PQ∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠B+∠D;(3)∠BPD=∠B+∠D+∠BQD.理由如下:连结QP并延长到E,如图3,∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,∴∠1+∠2=∠B+∠BQP+∠D+∠DQP,∴∠BPD=∠B+∠D+∠BQD;(4)连结AG,如图4,∵∠B+∠F=∠BGA+∠FAG,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°,∴n=6.故答案为6.
∴∠B=∠BOD,而∠BOD=∠BPD+∠D,∴∠B=∠BPD+∠D,即∠BPD=∠B-∠D;(2)(1)中的结论不成立,∠BPD=∠B+∠D.作PQ∥AB,如图2,∵AB∥CD,∴AB∥PQ∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠B+∠D;(3)∠BPD=∠B+∠D+∠BQD.理由如下:连结QP并延长到E,如图3,∵∠1=∠B+∠BQP,∠2=∠D+∠DQP,∴∠1+∠2=∠B+∠BQP+∠D+∠DQP,∴∠BPD=∠B+∠D+∠BQD;(4)连结AG,如图4,∵∠B+∠F=∠BGA+∠FAG,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠FAG+∠C+∠D+∠E+∠BAG+∠G=(5-2)×180°=6×90°,∴n=6.故答案为6.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询