
梯形题1997年祖冲之杯初中数学邀请赛试题
梯形ABCD,下列结论一定正确的是()A、S1+S3>S2+S4B、S1+S3<S2+S4C、S1*S3>S2*S4D、S1*S3<S2*S4要有过程...
梯形ABCD,下列结论一定正确的是()
A、S1+S3>S2+S4
B、S1+S3<S2+S4
C、S1*S3>S2*S4
D、S1*S3<S2*S4
要有过程 展开
A、S1+S3>S2+S4
B、S1+S3<S2+S4
C、S1*S3>S2*S4
D、S1*S3<S2*S4
要有过程 展开
4个回答
展开全部
选A
为了叙述方便,我标上字母,梯形ABCD中,AB‖CD,对角线AC,BD交于点O
S△AOB=S1,S△AOD=S4,S△BOC=S2,S△DOC=S3
∵AB‖CD
∴∠BAC=∠ACD
在△BAO与△DCO中
∠AOB=∠COD
∠BAO=∠DCO
∴△BAO∽△DCO(有两个内角相等的三角形是相似三角形)
∴AB:CD=AO:OC=BO:DO(相似三角形对应边成比例)
设CD:AB=OC:AO =DO: BO =a
∵AB≠CD
∴a≠1
∴S△DOC=a²•S△AOB(相似三角形面积比是对应边比例的平方)
即S3=a²•S1
∵△AOB与△BOC同高
∴S△BOC=a•S△AOB(同高的三角形面积比等于底边比)
即 S2=a•S1
同理 S4= a•S1
∴S1•S3=S1•a²S1=a²S1²
S2•S4= a•S1 •a•S1=a²S1²
故S1•S3= S2•S4
C,D错
∴S1+S3=S1+a²S1=(a²+1)S1
S2+S4= a•S1+a•S1=2a•S1
(S1+S3)-( S2+S4)
=(a²+1)S1-2a•S1
=S1(a²-2a+1)
=S1(a-1)²
∵a≠1,S1>0
∴S1(a-1)²>0
即(S1+S3)-( S2+S4)>0
S1+S3>S2+S4
选A
【希望对你有帮助】
为了叙述方便,我标上字母,梯形ABCD中,AB‖CD,对角线AC,BD交于点O
S△AOB=S1,S△AOD=S4,S△BOC=S2,S△DOC=S3
∵AB‖CD
∴∠BAC=∠ACD
在△BAO与△DCO中
∠AOB=∠COD
∠BAO=∠DCO
∴△BAO∽△DCO(有两个内角相等的三角形是相似三角形)
∴AB:CD=AO:OC=BO:DO(相似三角形对应边成比例)
设CD:AB=OC:AO =DO: BO =a
∵AB≠CD
∴a≠1
∴S△DOC=a²•S△AOB(相似三角形面积比是对应边比例的平方)
即S3=a²•S1
∵△AOB与△BOC同高
∴S△BOC=a•S△AOB(同高的三角形面积比等于底边比)
即 S2=a•S1
同理 S4= a•S1
∴S1•S3=S1•a²S1=a²S1²
S2•S4= a•S1 •a•S1=a²S1²
故S1•S3= S2•S4
C,D错
∴S1+S3=S1+a²S1=(a²+1)S1
S2+S4= a•S1+a•S1=2a•S1
(S1+S3)-( S2+S4)
=(a²+1)S1-2a•S1
=S1(a²-2a+1)
=S1(a-1)²
∵a≠1,S1>0
∴S1(a-1)²>0
即(S1+S3)-( S2+S4)>0
S1+S3>S2+S4
选A
【希望对你有帮助】
展开全部
由图可知面积s4+s3=s2+s3 所以s2=s4
由梯形对角线分割成四线段,由于交错角相等,由面积公式可知
s1*s3=s2*s4,故c、d不可能
所以当s1=s3矩形时s1+s3有最小值〔s1*s3为某定值时〕〔s1+s3=s2+s4〕
由题意可知s3大于s1
故s1+s3大于s2+s4
选A
由梯形对角线分割成四线段,由于交错角相等,由面积公式可知
s1*s3=s2*s4,故c、d不可能
所以当s1=s3矩形时s1+s3有最小值〔s1*s3为某定值时〕〔s1+s3=s2+s4〕
由题意可知s3大于s1
故s1+s3大于s2+s4
选A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、可以肯定S2=S4,
2、根据图形上底小于下底,可以断定S3大于S1
3选A
2、根据图形上底小于下底,可以断定S3大于S1
3选A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
看都能看出来,肯定是A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询