【解析图片】设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意实数x,均有x-1≤f(x)≤

【解析图片】设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意实数x,均有x-1≤f(x)≤x2-3x+3恒成立.(1)求f(x)的表达式... 【解析图片】设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意实数x,均有x-1≤f(x)≤x2-3x+3恒成立.(1)求f(x)的表达式;(2)若关于x的不等式f(x)≤nx-1的解集非空,求实数n的取值的集合A.(3)若关于x的方程f(x)=nx-1的两根为x1,x2,试问:是否存在实数m,使得不等式m2+tm+1≤|x1-x2|对任意n∈A及t∈[-3,3]恒成立?若存在,求出m的取值范围;若不存在,说明理由. 展开
 我来答
和谐国运可通天6879
推荐于2016-01-28 · TA获得超过114个赞
知道答主
回答量:184
采纳率:0%
帮助的人:129万
展开全部
(1)由x-1=x2-3x+3可得x=2,
故由题可知1≤f(2)≤1,
从而f(2)=1.
因此
a?b+c=0
4a+2b+c=1

故b=
1
3
-a,c=
1
3
-2a.由x-1≤f(x)
得ax2-(
2
3
+a)x+
4
3
-2a≥0对x∈R恒成立,
故△=(
2
3
+a)2-4a(
4
3
-2a)≤0,
即9a2-4a+
4
9
≤0,
解得a=
2
9

故f(x)=
2
9
x2+
x
9
-
1
9

(2)由
2
9
x2+
x
9
-
1
9
≤nx-1
得2x2+(1-9n)x+8≤0,
故△=(1-9n)2-64≥0,
解得n≤-
7
9
或n≥1,从而A=(-∞,-]
7
9
∪[1,+∞)
(3)显然|x1-x2|≥0,当且仅当n=-
7
9
或n=1时取得等号,
故m2+tm+1≤0对t∈[-3,3]恒成立.记g(t)=m?t+(m2+1),
则有
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消