高数包括什么内容呢
4个回答
展开全部
高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:极限、微积分、空间解析几何与向量代数、级数、常微分方程。
高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,才能深入地揭示其本质规律,才能使之得到更广泛的应用。
严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。
展开全部
1. 2005年数学考试大纲的修订说明与评述
(1) 基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统考试卷仍分为数学一、数学二、数学三和数学四。
(2) 数学一、二试卷高等数学部分,“函数、极限、连续”的考试要求的第4条增加“了解初等函数的概念”的要求。
原为“掌握基本初等函数的性质及其图形”。变为“掌握基本初等函数的性质及其图形,了解初等函数的概念”。
评述:进一步强调基础知识点。
(3)
数学一试卷高等数学部分,“多元函数微分学”的考试要求的第6条,数学二试卷高等数学部分,“多元函数微积分学”的考试要求的第3条,将原来的“会用隐函数的求志法则”改为“了解隐函数存在定理,会求多元隐函数的偏导数”。
评述:进一步强调基础知识点与概念理解的重要性。
(4) 数学三、四试卷高等数学部分,“函数、极限、连续”的考试要求的第3条,将“理解反函数、隐函数的概念”改为“了解反函数、隐函数的概念”,
原为“理解复合函数、反函数、隐函数和分段函数的概念”。变为“理解复合函数及分段函数的概念,了解反函数及隐函数的概念”。
评述:进一步强调基础知识点。
“一元函数微分学”的考试要求的第1条,增加“会求平面曲线的切线方程和法线方程”的要求。
原为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)”。
变为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。”
评述:进一步强调基础知识点,进一步提升对考生能力的要求。
(5)
数学三、四试卷线性代数部分,“线性方程组”的考试要求的第4条改为“4.理解非齐次线性方程组解的结构及通解的概念。5.掌握用初等行变换求解线性方程组的方法”。
原为“4.掌握理解非齐次线性方程组基础解系的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解”。变为以上的两条。
评述:进一步提升对考生能力的要求。
(6) 对数学一、三试卷概率论与数理统计部分和数学四试卷概率论部分的一些概念、考试内容和考试要求在文字表述上作了修改,使其更加规范和统一。
(7) 对数学一、二试卷的样卷进行了修订。
(8)
对数学一、二、三、四试卷中的考试内容和考试要求的表述更进一步明确、规范和统一,在考试内容部分只列出内容范围,而将有关内容的要求层次和应用这些内容可以解出的问题在考试要求部分列出。
2.2005年考研数学特点
2005考研数学试卷将进一步加大对考生掌握数学基础知识的准确性与全面性的考察力度,同时坚固不同知识点综合交叉运用性的基本能力。就难度而言,会维持2004年的水平。
2004年数学试题是近5年以来较容易也是最基本的一套试题。
2005年大纲维持2004年要求基本不变。只是进一步加强了对基础性知识点的重视与规范化要求。如:一元微分学中:增加了“接初等函数的概念准确的概念”,“会求平面曲线的切线方程与法线方程”,多元微分学强调了“了解隐函数存在定理,会求多元隐函数的偏导数”,线性代数强调“理解非齐次方程组解的结构及通解的概念”,“掌握用初等行变换求解线性方程组的方法”,等等。准确而全面的概念理解与过硬的基本计算能力,将是2005年考生取胜的关键。加强知识的基础性、系统综合性与交叉性的训练,努力提升对知识的洞察力,以不变应万变,排除误导,是我们的建议。
望采纳
(1) 基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统考试卷仍分为数学一、数学二、数学三和数学四。
(2) 数学一、二试卷高等数学部分,“函数、极限、连续”的考试要求的第4条增加“了解初等函数的概念”的要求。
原为“掌握基本初等函数的性质及其图形”。变为“掌握基本初等函数的性质及其图形,了解初等函数的概念”。
评述:进一步强调基础知识点。
(3)
数学一试卷高等数学部分,“多元函数微分学”的考试要求的第6条,数学二试卷高等数学部分,“多元函数微积分学”的考试要求的第3条,将原来的“会用隐函数的求志法则”改为“了解隐函数存在定理,会求多元隐函数的偏导数”。
评述:进一步强调基础知识点与概念理解的重要性。
(4) 数学三、四试卷高等数学部分,“函数、极限、连续”的考试要求的第3条,将“理解反函数、隐函数的概念”改为“了解反函数、隐函数的概念”,
原为“理解复合函数、反函数、隐函数和分段函数的概念”。变为“理解复合函数及分段函数的概念,了解反函数及隐函数的概念”。
评述:进一步强调基础知识点。
“一元函数微分学”的考试要求的第1条,增加“会求平面曲线的切线方程和法线方程”的要求。
原为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)”。
变为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。”
评述:进一步强调基础知识点,进一步提升对考生能力的要求。
(5)
数学三、四试卷线性代数部分,“线性方程组”的考试要求的第4条改为“4.理解非齐次线性方程组解的结构及通解的概念。5.掌握用初等行变换求解线性方程组的方法”。
原为“4.掌握理解非齐次线性方程组基础解系的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解”。变为以上的两条。
评述:进一步提升对考生能力的要求。
(6) 对数学一、三试卷概率论与数理统计部分和数学四试卷概率论部分的一些概念、考试内容和考试要求在文字表述上作了修改,使其更加规范和统一。
(7) 对数学一、二试卷的样卷进行了修订。
(8)
对数学一、二、三、四试卷中的考试内容和考试要求的表述更进一步明确、规范和统一,在考试内容部分只列出内容范围,而将有关内容的要求层次和应用这些内容可以解出的问题在考试要求部分列出。
2.2005年考研数学特点
2005考研数学试卷将进一步加大对考生掌握数学基础知识的准确性与全面性的考察力度,同时坚固不同知识点综合交叉运用性的基本能力。就难度而言,会维持2004年的水平。
2004年数学试题是近5年以来较容易也是最基本的一套试题。
2005年大纲维持2004年要求基本不变。只是进一步加强了对基础性知识点的重视与规范化要求。如:一元微分学中:增加了“接初等函数的概念准确的概念”,“会求平面曲线的切线方程与法线方程”,多元微分学强调了“了解隐函数存在定理,会求多元隐函数的偏导数”,线性代数强调“理解非齐次方程组解的结构及通解的概念”,“掌握用初等行变换求解线性方程组的方法”,等等。准确而全面的概念理解与过硬的基本计算能力,将是2005年考生取胜的关键。加强知识的基础性、系统综合性与交叉性的训练,努力提升对知识的洞察力,以不变应万变,排除误导,是我们的建议。
望采纳
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询