2^(log4^12)-3^(log9^27)+5^(log25^1/3)等于多少?
展开全部
log4^12
=lg12/lg4
=lg12/2lg2
=(1/2)lg12/lg2
=lg√12/lg2
=log2^√12
同理log9^27=log3^√27
log25^1/3=log5^(√1/3)
所以原式=2^(log2^√12)-3^(log3^√27)+5^[log5^(√1/3)]
=√12-√27+√(1/3)
=2√3-3√3+√3/3
=(-2/3)√3
=lg12/lg4
=lg12/2lg2
=(1/2)lg12/lg2
=lg√12/lg2
=log2^√12
同理log9^27=log3^√27
log25^1/3=log5^(√1/3)
所以原式=2^(log2^√12)-3^(log3^√27)+5^[log5^(√1/3)]
=√12-√27+√(1/3)
=2√3-3√3+√3/3
=(-2/3)√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2^(log4^12)-3^(log9^27)+5^(log25^1/3)
=[4^(log4^12)]^1/2-{9^(log9^27)}^1/2+[25^(log25^1/3)]^1/2
=√12-√27+√1/3
=2√3-3√3+√3/3
=-2√3/3
=[4^(log4^12)]^1/2-{9^(log9^27)}^1/2+[25^(log25^1/3)]^1/2
=√12-√27+√1/3
=2√3-3√3+√3/3
=-2√3/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询