数学,1 2 3 4题,求过程,谢谢。。。
1个回答
2015-01-14
展开全部
解:令x^(1/6)=t,那么x=t^6,dx=6t^5dt,代入得:
∫(x^(1/3)/x(√x+x^(1/3))dx = ∫(t^(2)/t^6(t^3+t^2))6t^5dt=∫(1/(1+t^2))dt=arctant+C
=arctanx^(1/6)+C∫1/2+√2x+1dx令√2x+1=t dx=dt
令x=cost
则原式=∫√(1+cost)/(1-cost)dcost
=∫√(1-cos^2t)/(1-cost)^2dcost
∫-sin^2t/(1-cost)dt
=∫(cos^2t-1)/(1-cost)dt
=∫-cost-1dt
=sint-t+c
还原原式=∫[2dx/√[1-(1-2x)²]=-∫[d(1-2x)]/√[1-(1-2x)²]=-arcsin(1-2x)+C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询