(2015?广东模拟)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M
(2015?广东模拟)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1...
(2015?广东模拟)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P-ABCD的体积等于3时,求PB的长.
展开
1个回答
展开全部
(1)证明:∵在△PBD中,O、M分别是BD、PD的中点,∴OM是△PBD的中位线,∴OM∥PB,…(1分)
∵OM?平面PBD,PB?平面PBD,…(3分)
∴OM∥平面PAB.…(4分)
(2)证明:∵底面ABCD是菱形,∴BD⊥AC,…(5分)
∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA.…(6分)
∵AC?平面PAC,PA?平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分)
∵BD?平面PBD,
∴平面PBD⊥平面PAC.…(10分)
(3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°,
∴菱形ABCD的面积为S菱形ABCD=2×
×AB×AD×sin60°=2×2×
=2
,…(11分)
∵四棱锥P-ABCD的高为PA,∴
×2
×PA=
,得PA=
…(12分)
∵PA⊥平面ABCD,AB?平面ABCD,∴PA⊥AB.…(13分)
在Rt△PAB中,PB=
=
=
.…(14分)
∵OM?平面PBD,PB?平面PBD,…(3分)
∴OM∥平面PAB.…(4分)
(2)证明:∵底面ABCD是菱形,∴BD⊥AC,…(5分)
∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA.…(6分)
∵AC?平面PAC,PA?平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分)
∵BD?平面PBD,
∴平面PBD⊥平面PAC.…(10分)
(3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°,
∴菱形ABCD的面积为S菱形ABCD=2×
1 |
2 |
| ||
2 |
3 |
∵四棱锥P-ABCD的高为PA,∴
1 |
3 |
3 |
3 |
3 |
2 |
∵PA⊥平面ABCD,AB?平面ABCD,∴PA⊥AB.…(13分)
在Rt△PAB中,PB=
PA2+AB2 |
(
|
5 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询