已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.(1)若数列{a

已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.(1)若数列{an}是首项和公差都是... 已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.(1)若数列{an}是首项和公差都是1的等差数列,求证:数列{bn}是等比数列;(2)若数列{bn}是等比数列,数列{an}是否是等差数列,若是请求出通项公式,若不是请说明理由; 展开
 我来答
雪花kud
2014-09-19 · 超过55用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:109万
展开全部
(1)依题意数列{an}的通项公式是an=n,
故等式即为bn+2bn-1+3bn-2++(n-1)b2+nb1=2n+1-n-2,bn-1+2bn-2+3bn-3++(n-2)b2+(n-1)b1=2n-n-1(n≥2),
两式相减可得bn+bn-1++b2+b1=2n-
得bn=2n-1,数列{bn}是首项为1,公比为2的等比数列.
(2)设等比数列{bn}的首项为b,公比为q,则bn=bqn-1,从而有:bqn-1a1+bqn-2a2+bqn-3a3++bqan-1+ban=2n+1-n-2,
又bqn-2a1+bqn-3a2+bqn-4a3++ban-1=2n-n-1(n≥2),
故(2n-n-1)q+ban=2n+1-n-2
an
2?q
b
×2n+
q?1
b
×n+
q?2
b

要使an+1-an是与n无关的常数,必需q=2,
即①当等比数列{bn}的公比q=2时,数列{an}是等差数列,其通项公式是an
n
b

②当等比数列{bn}的公比不是2时,数列{an}不是等差数列.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式