上面的行列式求基础解系是怎么求出来的,大家帮帮忙啊

 我来答
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
匿名用户

2015-12-06
展开全部
【知识点】
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn

【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则 Aα = λα
那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α
所以A²-A的特征值为 λ²-λ,对应的特征向量为α

A²-A的特征值为 0 ,2,6,...,n²-n

【评注】
对于A的多项式,其特征值为对应的特征多项式。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
窖倚傅最终71
2019-09-16 · TA获得超过181个赞
知道答主
回答量:43
采纳率:0%
帮助的人:6.9万
展开全部
首先化解那个矩阵-3 -1 -1 -1, 0 4 0 -4,0 4 -4 0,0 0 4 -4) 然后等于-3X1-X2-X3-X4=0,4X2-4X4=0,4X2-4X3=0,4X3-4X4=0,设X1=1,可以得X2=X3=X4=-1, 希望采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式