
已知函数f(x)=2√3sin(x+π/4)•cos(x+π/4)-sin(2x+3π)(1)求f
已知函数f(x)=2√3sin(x+π/4)•cos(x+π/4)-sin(2x+3π)(1)求f(x)的最小正周期...
已知函数f(x)=2√3sin(x+π/4)•cos(x+π/4)-sin(2x+3π)(1)求f(x)的最小正周期
展开
1个回答
展开全部
解:
f(x)
=2√3sin(x+π/4)•cos(x+π/4)-sin(2x+3π)
=√3sin(2x+π/2)-[-sin(2x)]
=√3cos(2x)+sin(2x)
=2[sin(π/3)cos(2x)+cos(π/3)sin(2x)]
=2sin(2x+π/3)
最小正周期是:
2π/2=π
f(x)
=2√3sin(x+π/4)•cos(x+π/4)-sin(2x+3π)
=√3sin(2x+π/2)-[-sin(2x)]
=√3cos(2x)+sin(2x)
=2[sin(π/3)cos(2x)+cos(π/3)sin(2x)]
=2sin(2x+π/3)
最小正周期是:
2π/2=π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询