如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(Ⅰ)求证:PC⊥AB;(Ⅱ)求二面角B-

如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(Ⅰ)求证:PC⊥AB;(Ⅱ)求二面角B-AP-C的大小;(Ⅲ)求点C到平面A... 如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(Ⅰ)求证:PC⊥AB;(Ⅱ)求二面角B-AP-C的大小;(Ⅲ)求点C到平面APB的距离. 展开
 我来答
忆这夏_深336
推荐于2018-05-06 · 超过54用户采纳过TA的回答
知道答主
回答量:99
采纳率:0%
帮助的人:135万
展开全部


(Ⅰ)取AB中点D,连接PD,CD.
∵AP=BP,∴PD⊥AB.
∵AC=BC,∴CD⊥AB.
∵PD∩CD=D,∴AB⊥平面PCD.
∵PC?平面PCD,∴PC⊥AB.
(Ⅱ)∵AC=BC,AP=BP,∴△APC≌△BPC.
又PC⊥AC,∴PC⊥BC.


又∠ACB=90°,即AC⊥BC,且AC∩PC=C,∴BC⊥平面PAC.
取AP中点E.连接BE,CE.
∵AB=BP,∴BE⊥AP.
∵EC是BE在平面PAC内的射影,∴CE⊥AP.
∴∠BEC是二面角B-AP-C的平面角.
在△BCE中,BC=2, BE=
3
2
AB=
6
,CE=
2

cos∠BEC=
1
3
.∴二面角B-AP-C的大小 arccos
1
3

(Ⅲ)由(Ⅰ)知AB⊥平面PCD,∴平面APB⊥平面PCD.
过C作CH⊥PD,垂足为H.


∵平面APB∩平面PCD=PD,∴CH⊥平面APB.
∴CH的长即为点C到平面APB的距离.
由(Ⅰ)知PC⊥AB,又PC⊥AC,且AB∩AC=A,∴PC⊥平面ABC.
∵CD?平面ABC,∴PC⊥CD.
在Rt△PCD中, CD=
1
2
AB=
2
PD=
3
2
PB=
6

PC=
P D 2 -C D 2
=2
.∴ CH=
PC?CD
PD
=
2
3
3

∴点C到平面APB的距离为
2
3
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式