设平面区域D={(x,y)|1≤x2+y2≤4,x≥0.y≥0}.计算∫∫Dxsin(πx2+y2)x+ydxdy
设平面区域D={(x,y)|1≤x2+y2≤4,x≥0.y≥0}.计算∫∫Dxsin(πx2+y2)x+ydxdy....
设平面区域D={(x,y)|1≤x2+y2≤4,x≥0.y≥0}.计算∫∫Dxsin(πx2+y2)x+ydxdy.
展开
1个回答
展开全部
∵积分区域D关于x,y的对称性
∴
dxdy=
dxdy
因此有:
dxdy=
[
dxdy+
dxdy]
=
dxdy
=
sin(π
)dxdy
令x=rcosθ,y=rsinθ r∈[1,2],θ?[0,
];
于是原积分可化为:
dxdy=
sin(π
)dxdy
=
dθ
rsinπrdr
=
rsinπrdr
=
rsinπrdπr
=
×(-
rdcosπr)
=
×(-rcosπr
+
cosπrdr)
=
×(-3+
cosπrdr)
=-
.
故本题答案为:-
.
∴
? |
D |
xsin(π
| ||
x+y |
? |
D |
ysin(π
| ||
x+y |
因此有:
? |
D |
xsin(π
| ||
x+y |
1 |
2 |
? |
D |
xsin(π
| ||
x+y |
? |
D |
ysin(π
| ||
x+y |
=
1 |
2 |
? |
D |
(x+y)sin(π
| ||
x+y |
=
1 |
2 |
? |
D |
x2+y2 |
令x=rcosθ,y=rsinθ r∈[1,2],θ?[0,
π |
2 |
于是原积分可化为:
? |
D |
xsin(π
| ||
x+y |
1 |
2 |
? |
D |
x2+y2 |
=
1 |
2 |
∫ |
0 |
∫ | 2 1 |
=
π |
4 |
∫ | 2 1 |
=
1 |
4 |
∫ | 2 1 |
=
1 |
4 |
∫ | 2 1 |
=
1 |
4 |
| | 2 1 |
∫ | 2 1 |
=
1 |
4 |
∫ | 2 1 |
=-
3 |
4 |
故本题答案为:-
3 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询