铵根离子和氢氧根离子不加热会生成氨气吗
铵根离子与氢氧根离子不加热也能生成氨气。
1、铵根与氢氧根反应生成弱碱一水合氨(NH₃·H₂O),一水合氨不稳定,易分解成氨气和水,由于氨气具有很强的挥发性,反应在熵驱动下很容易进行。
如:氯化铵与熟石灰混合研磨,能闻到氨味。
2、氢氧化钠和铵盐溶液浓度都比较大时,也能反应生成氨气,特别是在氢氧化钠存在的碱性条件下,促进氨气溶解平衡向逆方向移动,使氨气的溶解度降低,更有利于氨气逸出。
3、如果碱或者铵盐的浓度较小,生成的少量氨溶解在水里,不以氨气的形式逸出,这种情况为了得到氨气,需要加热。
结论:铵根与氢氧根离子反应时,如果生成的氨较少,需要加热才能产生氨气;如果生成的较多,不需要加热就可以生成氨气。
扩展资料:
一、氨的用途
1、氨的主要用途是氮肥、制冷剂、化工原料。
2、无机方面主要用于制氨水、液氨、氮肥(尿素、碳铵等)、硝酸、铵盐、纯碱。
3、有机方面广泛应用于合成纤维、塑料、染料、尿素等。
二、氨气泄漏应急处置措施
1、少量泄漏。
撤退区域内所有人员。防止吸入蒸气,防止接触液体或气体。处置人员应使用呼吸器。禁止进入氨气可能汇集的局限空间,并加强通风。只能在保证安全的情况下堵漏。
泄漏的容器应转移到安全地带,并且仅在确保安全的情况下才能打开阀门泄压。可用砂土、蛭石等惰性吸收材料收集和吸附泄漏物。收集的泄漏物应放在贴有相应标签的密闭容器中,以便废弃处理。
2、大量泄漏。
疏散场所内所有未防护人员,并向上风向转移。泄漏处置人员应穿上全封闭重型防化服,佩戴好空气呼吸器,在做好个人防护措施后,用喷雾水流对泄漏区域进行稀释。通过水枪的稀释,使现场的氨气渐渐散去,利用无火花工具对泄漏点进行封堵。
向当地政府和“119”及当地环保部门、公安交警部门报警,报警内容应包括事故单位;事故发生的时间、地点、化学品名称和泄漏量、危险程度;有无人员伤亡以及报警人姓名、电话。
禁止接触或跨越泄漏的液氨,防止泄漏物进入阴沟和排水道,增强通风。场所内禁止吸烟和明火。在保证安全的情况下,要堵漏或翻转泄漏的容器以避免液氨漏出。
要喷雾状水,以抑制蒸气或改变蒸气云的流向,但禁止用水直接冲击泄漏的液氨或泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。禁止进入氨气可能汇集的受限空间。清洗以后,在储存和再使用前要将所有的保护性服装和设备洗消。
参考资料来源:百度百科——氨
1、铵根与氢氧根反应生成弱碱一水合氨(NH₃·H₂O),一水合氨不稳定,易分解成氨气和水,由于氨气具有很强的挥发性,反应在熵驱动下很容易进行。
如:氯化铵与熟石灰混合研磨,能闻到氨味。
2、氢氧化钠和铵盐溶液浓度都比较大时,也能反应生成氨气,特别是在氢氧化钠存在的碱性条件下,促进氨气溶解平衡向逆方向移动,使氨气的溶解度降低,更有利于氨气逸出。
3、如果碱或者铵盐的浓度较小,生成的少量氨溶解在水里,不以氨气的形式逸出,这种情况为了得到氨气,需要加热。
结论:铵根与氢氧根离子反应时,如果生成的氨较少,需要加热才能产生氨气;如果生成的较多,不需要加热就可以生成氨气。
扩展资料
1、氨气的熔点是-77.7℃,沸点-33.5℃;极易溶于水(1:700),自燃点651.1℃,临界体积72.47cm3/mol,临界压力11.2mPa,临界密度0.235g/cm3,临界压缩系数0.242,临界点132.4℃,空气中爆炸低限含量16.1%( φ ),空气中爆炸高限含量25%( φ )。
2、工业上制氨气是以哈伯法通过N2和H2在高温高压和催化剂存在下直接化合而制成的,氮气主要来源于空气;氢气主要来源于含氢和一氧化碳的合成气。从燃料化工来的原料气含有硫化合物和碳的氧化物,它们对于合成氨的催化剂是有毒物质,在氨合成前要经过净化处理。
3、如果患者只是单纯接触氨气,并且没有皮肤和眼的刺激症状,则不需要清除污染。假如接触的是液氨,并且衣服已被污染,应将衣服脱下并放入双层塑料袋内。
参考资料来源:百度百科——氨
1、铵根与氢氧根反应生成弱碱一水合氨(NH3·H2O),一水合氨不稳定,易分解成氨气和水,由于氨气具有很强的挥发性,反应在熵驱动下很容易进行。
如:氯化铵与熟石灰混合研磨,能闻到氨味。(初中课本内容)
2、氢氧化钠和铵盐溶液浓度都比较大时,也能反应生成氨气,特别是在氢氧化钠存在的碱性条件下,促进氨气溶解平衡向逆方向移动,使氨气的溶解度降低,更有利于氨气逸出。
3、如果碱或者铵盐的浓度较小,生成的少量氨溶解在水里,不以氨气的形式逸出,这种情况为了得到氨气,需要加热。
结论:铵根与氢氧根离子反应时,如果生成的氨较少,需要加热才能产生氨气;如果生成的较多,不需要加热就可以生成氨气。