高数题,如图,求解?12题?
1个回答
展开全部
z=F(u)
F(u)= sinu +∫(1->2x-y) φ(t) dt ( 该是这样 )
To find: ∂z/∂x , ∂z/∂y
Solution:
2u= sinu +∫(1->2x-y) φ(t) dt
2u.∂u/∂x = cosu + φ(2x-y). (2∂u/∂x )
2( 1-φ(2x-y) ) .∂u/∂x = cosu
∂u/∂x = cosu/[2( 1-φ(2x-y) )] (1)
2u= sinu +∫(1->2x-y) φ(t) dt
2.∂u/∂y = cosy + φ(2x-y). (-∂u/∂y )
(2+φ(2x-y) ) .∂u/∂y = cosu
∂u/∂y = cosu/( 2+φ(2x-y) ) (2)
z=F(u)
∂z/∂x = Fx(u) . ∂u/∂x = Fx(u) . {cosu/[2( 1-φ(2x-y) )]}
∂z/∂y = Fy(u) . ∂u/∂y =Fy(u) .{ cosu/( 2+φ(2x-y) ) }
F(u)= sinu +∫(1->2x-y) φ(t) dt ( 该是这样 )
To find: ∂z/∂x , ∂z/∂y
Solution:
2u= sinu +∫(1->2x-y) φ(t) dt
2u.∂u/∂x = cosu + φ(2x-y). (2∂u/∂x )
2( 1-φ(2x-y) ) .∂u/∂x = cosu
∂u/∂x = cosu/[2( 1-φ(2x-y) )] (1)
2u= sinu +∫(1->2x-y) φ(t) dt
2.∂u/∂y = cosy + φ(2x-y). (-∂u/∂y )
(2+φ(2x-y) ) .∂u/∂y = cosu
∂u/∂y = cosu/( 2+φ(2x-y) ) (2)
z=F(u)
∂z/∂x = Fx(u) . ∂u/∂x = Fx(u) . {cosu/[2( 1-φ(2x-y) )]}
∂z/∂y = Fy(u) . ∂u/∂y =Fy(u) .{ cosu/( 2+φ(2x-y) ) }
追问
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询