高中数学题求详解谢谢
1个回答
展开全部
(1)
an=2+(n-1)x
bn=3*y^(n-1)
则有2+2x+3*y^4=56
2+4x+3*y^2=26
得(2*y^2+7)*(y^2-4)=0
得y=2(由于bn为正数数列,故y=2)
得x=3
得an=2+3*(n-1)=3n-1
bn=3*2^(n-1)
(2)
取m=n+1
则有an=a(m-1)=3m-4=am-3
a(n+2)=a(m+1)=3m+2=am+3
得an*a(n+2)=(am-3)*(am+3)
1/an*a(n+2)=1/(am-3)*(am+3)=[1/(am-3)-1/(am+3)]*(1/6)
Tn=(1/6)*[T(1/(am-3))-T(1/(am+3))]
T(1/(am-3))=T(1/(a(n+1)-3))=1/(a(2)-3)+1/(a(3)-3)+…………+1/(a(n+1)-3)
T(1/(am+3))=T(1/(a(n+1)+3))=1/(a(2)+3)+1/(a(3)+3)+…………+1/(a(n+1)+3)
an=2+(n-1)x
bn=3*y^(n-1)
则有2+2x+3*y^4=56
2+4x+3*y^2=26
得(2*y^2+7)*(y^2-4)=0
得y=2(由于bn为正数数列,故y=2)
得x=3
得an=2+3*(n-1)=3n-1
bn=3*2^(n-1)
(2)
取m=n+1
则有an=a(m-1)=3m-4=am-3
a(n+2)=a(m+1)=3m+2=am+3
得an*a(n+2)=(am-3)*(am+3)
1/an*a(n+2)=1/(am-3)*(am+3)=[1/(am-3)-1/(am+3)]*(1/6)
Tn=(1/6)*[T(1/(am-3))-T(1/(am+3))]
T(1/(am-3))=T(1/(a(n+1)-3))=1/(a(2)-3)+1/(a(3)-3)+…………+1/(a(n+1)-3)
T(1/(am+3))=T(1/(a(n+1)+3))=1/(a(2)+3)+1/(a(3)+3)+…………+1/(a(n+1)+3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询